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ABSTRACT

In this paper, the localization of spatially distributed sources
is considered. Based on the problem formulation of the De-
convolution Approach for the Mapping of Acoustic Sources
(DAMAS), a criterion based on a convex optimization under
sparsity constraint is proposed to locate the sources. Also an
original method is given to recover the angular distributions
and the power of the sources. Simulations executed in the
scenario of a mixture of distributed and point sources illus-
trate the validation of the proposed approach compared to
other methods.

Index Terms— distributed sources, sparsity method, an-
gular dispersion, DAMAS, CMF

1. INTRODUCTION

Direction of arrival (DOA) estimation of source signals im-
pinging on an array of sensors has been widely studied in
the literature with the sources assumed to be far-field point
transmitters or reflectors [1]. In many applications, the phys-
ical sources can no longer be considered as point sources
and a spatially distributed model of the sources could be
more appropriate. The influence of modeling errors due
to the spatial distribution of the sources on the high reso-
lution MUSIC [1] method has been recently analyzed [2]
and shows the importance of taking into account the actual
model of the sources.

Plenty of DOA estimation methods have been proposed
in the literature. The commonly used Beamforming (or
spatial filtering) combines the array elements to enhance
the output at particular directions while weaken the out-
put at other directions. Deconvolution algorithms such as
DAMAS [3] improve the resolution of Beamforming, but
require thousands of iterations of deconvolution to resolve
the proposed criterion. Sparsity and convex optimization
based deconvolution algorithms proposed in the literature
have exhibited better performance than DAMAS. For in-
stance, Sparsity constrained DAMAS (SC-DAMAS) [4] min-
imizes the DAMAS criterion with a sparsity constraint on
the sources. Covariance Matrix Fitting (CMF) [4] mini-

mizes the difference between the covariance matrix obtained
by the sensor measurements and the modeled one, with a
constraint that the trace of the source covariance matrix is
not larger than the sum of the source powers. To locate co-
herent sources, DAMAS-C [5] and CMF-C [4] have been
proposed as an extension of DAMAS and CMF. While the
sources are distributed, an intra-task correlation within a
same contiguous cluster is introduced as an a-priori knowl-
edge in the convex criterion [6].

In this paper, we approximate the coherent distributed
(CD) source as a compact cluster of coherent point sources
weighted by the source distribution function, so as to formu-
late our problem in the scenario of DAMAS-C. We here ex-
tend the SC-DAMAS criterion with a constraint of minimiz-
ing the rank of the distribution function weighted source co-
variance matrix, to adapt to the distributed source scenario.
After the DOA estimation step, we recover the source distri-
bution functions and the power of the sources. The simula-
tion results are compared with other methods to demonstrate
the effectiveness of our proposed method.

The organization of this paper is as follows. The signal
model is given in section 2. In section 3, we formulate math-
ematically the source localization problem and propose the
criterion adapted to the CD sources. In section 4, we present
the method to recover the source distribution functions and
the source power. Numerical simulations are presented in
section 5 to validate the proposed approach. Finally, con-
clusions are given is section 6.

2. SIGNAL MODEL

Let us consider q spatially CD far-field sources signals im-
pinging at an array of M sensors. The q sources and the
M signals received at the array at moment t are denoted by
s(t) = [s1(t), . . . , sq(t)]

T and y(t) = [y1(t), . . . , yM (t)]T ,
respectively, with:

y(t) = C(θ)s(t) + n(t), (1)

where n(t) ∈ CM×1 represents the complex Gaussian dis-
tributed additive noise, C(θ) = [ch1

(θ1), . . . , chq (θq)] ∈



CM×q is the array steering matrix composed of q steering
vectors chi(θ) that can be written as proposed in [7] by:

chi(θi) =

∫ π
2

−π2
a(φ)hi(θi, φ)dφ, (2)

where i = 1 . . . q, and a(φ) is the steering vector for a
point source which arrives from the DOA φ. In the most
general case, the steering vector a(φ) is also a function of
the array geometry, the sensor gains, the form of the wave-
front, and other possible parameters which are supposed to
be known. The function h(φ) is introduced to describe the
angular spread distribution of the source (for instance, uni-
form or Gaussian distributions).

The angular sector of interest is discretized by L grid
points such that φk = φ1 + (k−1)δ, k = 1, . . . , L, where δ
is the angular separation between two points of the grid, the
value of δ can be determined by the required resolution. The
steering matrix composed of L point source steering vectors
corresponding to the grid can be given as:

A = [a(φ1), . . . , a(φk), . . . , a(φL)] . (3)

Introducing a distribution function vector for source i:
hi = [hi(θi, φ1), . . . , hi(θi, φL)]T ∈ RL×1, and introduc-
ing the matrix H = [h1, . . . ,hq] ∈ RL×q . Assuming that
the value of δ is small enough, the distributed source steer-
ing vector for source i and the signals received at the sensor
array can be approximated by:

chi(θi) ≈ δ
L∑
k=1

a(φk)hi(θi, φk) = δAhi, (4)

introducing (4) in (2), then in (1), the received signals y(t)
can be approximated by:

y(t) ≈ δAHs(t) + n(t), (5)

respectively. With (4) and (5) the CD source location prob-
lem can be transformed into a coherent point source local-
ization problem.

The source signals and the additive noise are considered
to be centered Gaussian independent random variables, and
assuming that signals and noises are uncorrelated and the
sources are uncorrelated with each other, considering (1),
and (5), the correlation matrix is given by:

R = E[yyH ]

≈ δ2AHE[s(t)sH(t)]HHAH + σ2
b I

= δ2AHRsHHAH + σ2
b I, (6)

where Rs = E[s(t)sH(t)] = diag{σ2
si} is a diagonal ma-

trix, σ2
si is the power for source i, σ2

b is the noise variance.
Now the covariance matrix is approximated as an explicit
functions of the point source steering vectors and the clus-
ters of the coherent point sources.

3. SOURCE LOCALIZATION ALGORITHM

In this section, we first present the problem formulation for
applying the source localization approach, then we propose
the optimization criterion.

Defining that X = HRsHH , and noting the element at
kth line and k′th column of X as Xkk′ = γkk′ , we employ a
cross-beamform product:

gmn = aHmRan = δ2aHmAHRsHHAHan + σ2
baHman

= δ2aHmAXAHan + σ2
baHman

= δ2
L∑
k=1

L∑
k′=1

γkk′aHmakaHk′an + σ2
baHman, (7)

where am and an are simplified notations for a(φm) and
a(φn).

Assuming that the noise on the array can be ignored, an
inverse problem can be given as:

g = δ2ADx. (8)

The details are given as:

g = [g11, g12, . . . , g1L, . . . , gmn, . . . , gLL]
T ∈ RL

2×1,
(9)

AD =
aH1 a1aH1 a1 . . . aH1 akaHk′a1 . . . aH1 aLaHL a1

...
. . .

...
aHma1aH1 an . . . aHmakaHk′an . . . aHmaLaHL an

...
. . .

...
aHL a1aH1 aL . . . aHL akaHk′aL . . . aHL aLaHL aL


∈ RL

2×L2

, (10)

and

x = [γ11, γ12, . . . , γ1L, . . . , γkk′ , . . . , γLL]
T ∈ RL

2×1,
(11)

respectively. Notice that x can be obtained by vectorization
of X.

To resolve x, DAMAS-C [5] has been proposed as an
iterative approach based on the fact that all the elements
are non-negative, the initial value of x can be set 0. If we
know a priori that the sources are point and uncorrelated,
then x shrinks to [γ11, γ22, . . . , γkk, . . . , γLL] ∈ RL×1, and
AD and g shrink correspondingly to a smaller size, where
DAMAS [3] can be used. In many applications, the number
of sources are much smaller than the number of grid points
in the scanning region. Note ei the number of non-zero co-
efficients of hi, so the number of non-zero coefficients of X
is
∑q
i=1 e

2
i . One can assume that X is sparse if hi are sparse,

since
∑q
i=1 e

2
i ≤ (

∑q
i=1 ei)

2 ≤ L2. Therefore, considering



the sparsity property of the sources, a convex optimization
criterion called SC-DAMAS [4] has been given as:{

x̂ = argmin
x
‖g− δ2ADx‖22 + λ1‖x‖1,

subject to X ≥ 0,
(12)

where λ1 is the sparsity constraint weighting parameter, X ≥
0 means that the matrix X is semi-definite. Note that (12) is
the basis pursuit (or LASSO) problem with a semi-definite
constraint on X.

However, as we will see in section 5, SC-DAMAS can
not estimate perfectly x in the scenario of distributed sources.
To ameliorate the performance, recall that X = HRsHH ∈
RL×L, but the rank of X equals to the number of the sources
q which is much smaller than L, we here wish to add a low
rank constraint of X.

Rank minimization problem is in general non-deterministic
polynomial-time hard (NP-hard). Fortunately, we have sev-
eral relaxation solutions. For example, the trace-norm re-
laxation as in [8]. Introduce the trace-norm minimum con-
straint to (12):{

x̂ = argmin
x
‖g− δ2ADx‖22 + λ1‖x‖1 + λ2Tr(X),

subject to X ≥ 0,
(13)

where λ2 is the low-rank constraint weighting parameter.
Both SC-DAMAS and the proposed approach can be re-
solved by CVX toolbox [9].

4. DISTRIBUTION SHAPE AND SOURCE POWER
RECOVERY

We can get X̂ once x̂ is estimated, then the source loca-
tions and the number of sources can be deduced by X̂, if
λ1 and λ2 are properly chosen. Most source localization al-
gorithms stop here and have X̂ as a final result. Here, we
continue to recover the source distribution shape and esti-
mate the source power.

Let X̂ = VΛVH be the eigenvalue decomposition (EVD)
of X̂, where the columns v1, . . . , vL of the unitary matrix V
are the eigenvectors of X̂ and the diagonal elements λ1, . . . , λL
of the diagonal matrix Λ are the corresponding eigenvalues
such that λ1 ≥ λk ≥ λL, 1 ≤ k ≤ L. Recalling again that
X = HRsHH =

∑q
i=1 σ

2
sihih

H
i , the sources are assumed

to be disjoints to each other, therefore hi is orthogonal to
hj , for i 6= j. Due to the noise and ambiguities in the case
where several sources have same power, hi are linear com-
binations to the eigenvectors of X. Under the hypothesis
that the sources are disjoint from each other, we seek to find
vectors vhi , 1 ≤ i ≤ q, which are linear combinations of
v1, . . . , vq: vhi = αi1v1 + . . . + αiqvq , such that the non-
zero support of each vector vhi are disjoint so as to be pro-
portional to the distribution vectors h1, . . . ,hq . We set the

coefficients α11 = α21 = . . . = αq1 = 1. For vhi , the other
coefficients can be obtained as follows:

{αi2, . . . , αiq} = argmin
{αi2,...,αiq}

‖v1 + . . .+ αiqvq‖11

s.t. : vHhivh1
= vHhivh2

= . . . , vHhivhi−1
= 0. (14)

(14) can also be solved by the CVX toolbox [9]. The
order of vh1 , . . . , vhq should be adjusted according to the
result of (13) to be identical to the actual sources. Notice
that

∑L
k=1 δhik = 1, hi can be estimated by:

ĥi =
vhi

δ‖vhi‖11
. (15)

Finally, to recover the signal powers σ2
s1, . . . , σ

2
sq , we

normalize vhi to simplify the following calculations as: ṽi =

vhi/
√

vHhivhi . Noting that ĥi = ρiṽi, we have ρ2i = ĥ
H

i ĥi.

With X̂ṽi =∑q
j=1 σ

2
sj ĥj ĥ

H

j ṽi =
∑q
j=1 σ

2
sjρ

2
j ṽj ṽHj ṽi = λiṽi, the power

of the ith source can be estimated by:

σ̂2
si =

λi
ρ2i

=
λi

ĥ
H

i ĥi
. (16)

5. NUMERICAL SIMULATIONS

In this section, numerical simulations are presented to illus-
trate the validity of the proposed approach and compared
with other approaches. In all simulations, a uniform lin-
ear array composed of M = 20 sensors spaced by half-
wavelength is considered, SNR = 10dB, and N = 1000
snapshots. The angular separation between two points in
the grid δ = 1◦. Five sources are transmitted from far-
field with different DOAs (33◦, 41◦, 50◦, 60◦, 74◦) and dif-
ferent distribution shapes (point, uniform, point, Gaussian,
Gaussian) and the signal power : σ2

s1 = 1, σ2
s2 = 5, σ2

s3 =
1, σ2

s4 = 4, σ2
s5 = 5. For SC-DAMAS and the proposed

method, λ1 = 10, λ2 = 50. Retaking the same definition of
x and X as in section 3, we here slightly modify the criterion
CMF as:

x̂ = argmin
x
‖R̂− δ2AXAH‖22 +λ1‖x‖1 +λ2Tr(X), (17)

where a sparsity constraint is added to the conventional cri-
terion, R̂ is estimated by the sensor measurements, λ1 =
λ2 = 1.

In Figure 1 we compare the estimated X̂ by DAMAS-C,
SC-DAMAS, CMF and the proposed method to the real one.
We can see that the source location result of DAMAS-C is
damaged by the edge effects. SC-DAMAS can not recover
the contiguous support of the sources. CMF has a better
performance for source localization, except that the mag-
nitude do not match the real values (especially for the first



source s1). In contrary the proposed approach has a better
performance for recovering X.

Figure 2a illustrates the eigenvectors of X̂ estimated by
the proposed approach corresponding to the sources, we
can see that the supports of sources have been found, but
each support is composed of a mixture of all the sources,
which motivates the unmixing step in section 4 to recover
the source distribution functions. Results in Figure 2b shows
that the sources are unmixed and hi are estimated.

In Figure 3 we compare the results for the estimation of
the source distribution functions by SC-DAMAS, CLEAN
[10], CMF, and our proposed approach to the real ones. We
can see that SC-DAMAS and CLEAN have a good estima-
tion performance for point sources (s1 and s3), as to the dis-
tributed sources (s2, s4 and s5), CLEAN can only find the
DOA, and SC-DAMAS can only find discrete points within
the source support, which is identical in Figure 1. CMF and
the proposed method have better performances.

In table 1 we illustrate the mean square error (MSE) of
the signal power estimation, based on the estimation results
X̂ by SC-DAMAS, CMF and the proposed method , (16)
is used to estimate the source power, while other methods
can not achieve good estimation results of X to go on to this
step. We can see that the MSE of CMF and the proposed
method are of the same order, while SC-DAMAS gets a
MSE slightly larger. In addition, in the process of the ex-
periments, we have noticed that the performance of CMF
is much more sensitive to the values of λ1 and λ2 than the
proposed method.

s1 s2 s3 s4 s5
SC-DAMAS 0.032 0.052 0.11 0.81 0.09

CMF 0.05 0.016 0.04 0.07 0.031
Proposed 0.023 0.04 0.023 0.09 0.025

Table 1: MSE of signal power estimation

6. CONCLUSION AND PERSPECTIVES

In this paper, an approach based on the sources’ sparse prop-
erty is proposed for the spatially CD source localization in
far-field. In a first step, the supports of sources in the scan-
ning region have been found; then, the distribution functions
of each source have been separated and recovered; at last,
the source powers have been estimated.

However, the computational time to resolve the convex
criterion in the proposed approach augments rapidly as the
grid number in the scanning region increases. In further
study, we will focus on ameliorating the speed of the pro-
posed approach, then apply this approach to real data.
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Figure 1: Estimated source covariance matrix
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Figure 2: Estimated sources distribution shapes
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Figure 3: Real distribution functions and estimated distribu-
tion functions



7. REFERENCES

[1] H. Krim and M. Viberg, “Two decades of array signal
processing research: the parametric approach,” Signal
Processing Magazine, IEEE, vol. 13, no. 4, pp. 67–94,
Aug. 1996.

[2] W. Xiong, J. Picheral, and S. Marcos, “Performance
analysis of music in the presence of modeling errors
due to the spatial distributions of sources,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on. IEEE, Apr. 2015,
pp. 2804–2808.

[3] T. F. Brooks and W. M. Humphreys, “A deconvolution
approach for the mapping of acoustic sources (damas)
determined from phased microphone arrays,” Journal
of Sound and Vibration, vol. 294, no. 4, pp. 856–879,
2006.

[4] T. Yardibi, J. Li, P. Stoica, and L. N. Cattafesta III,
“Sparsity constrained deconvolution approaches for
acoustic source mapping,” The Journal of the Acousti-
cal Society of America, vol. 123, no. 5, pp. 2631–2642,
2008.

[5] T. F. Brooks and W. M. Humphreys, “Extension of
damas phased array processing for spatial coherence
determination (damas-c),” AIAA paper, vol. 2654, p.
2006, May 2006.

[6] S. Qin, Q. Wu, Y. Zhang, and M. Amin, “Doa esti-
mation of nonparametric spreading spatial spectrum
based on bayesian compressive sensing exploiting
intra-task dependency,” in Acoustics, Speech and Sig-
nal Processing (ICASSP), 2015 IEEE International
Conference on. IEEE, Apr. 2015, pp. 2804–2808.

[7] S. Valaee, B. Champagne, and P. Kabal, “Parametric
localization of distributed sources,” Signal Processing,
IEEE Transactions on, vol. 43, no. 9, pp. 2144–2153,
1995.

[8] E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voronin-
ski, “Phase retrieval via matrix completion,” SIAM Re-
view, vol. 57, no. 2, pp. 225–251, Aug. 2015.

[9] M. Grant, S. Boyd, and Y. Ye, “Cvx: Matlab software
for disciplined convex programming,” 2008.

[10] P. Sijtsma, “Clean based on spatial source coherence,”
International journal of aeroacoustics, vol. 6, no. 4,
pp. 357–374, Dec. 2007.


