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“Compressive sampling” (CS) is a new signal acquisition strategy that intends to reduce sig-
nificantly the amount of recorded data by picking only a limited number of samples. CS theory
asserts that one can reconstruct a given signal from a few randomly distributed samples if only
the signal is sparse in a proper basis. CS ensures a minimum loss of information but requires,
for the reconstruction of the signal, the use of dedicated sparsity-promoting algorithms. In this
paper, CS is applied to the source localization problem usingan array of randomly distributed
microphones. In this case, the signal of interest is sparse in the spatial domain, i.e a few po-
sitions in space contain sources. We focus on the near-field beamforming where the array of
sensors is sensitive to the sources directivity. The localization method is extended to complex
sources and we attempt to identify them in terms of multipoles. Numerical simulations and
experimental results prove this sparsity-promoting method to be powerful for source localiza-
tion. However the identification step, quite successful on ideal data, is not sufficiently robust
when applied to experimental data and need further investigations.

1. Introduction

The present work investigates the use of compressive sampling techniques for acoustic sources
localization and identification. The localization problemis most commonly solved by the standard
beamforming technique [1] (SBF) using an array of microphones. Its main advantages are flexibility
and straightforward implementation. It involves spectralprocessing and uses cross-spectral matrices
(CSM) and phase shifting in order to provide maps of the sound intensity in the so called recon-
struction space. However this standard method presents drawbacks. It suffers from a resolution limit
which is proportional to the wave length to array dimension ratio. Moreover the directivity pattern of
the array may present grating lobes if the array step is too high with respect to the wave length. This
may reveal non-existent sources. Using a large number of sensors may allow overcoming these lim-
itations but would induce complex issues of synchronization, calibration, A/D conversion, and total
data throughput. Other techniques achieving super resolution have been derived such as MUSIC [2], a
subspace-based method, or CAPON method [3]. However these methods fail when correlated sources
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are to be localized and are not made free from using a large amount of sensors. Compressive sam-
pling [4] (CS) techniques, recently emerging from applied mathematics, intend to reduce significantly
the amount of data throughput when recording time signals orspatial fields without loss of informa-
tion, thus allowing source reconstruction from a limited data set. However, CS requires on one hand
that the recorded signal or field be sparse and on the other hand that specific reconstruction algo-
rithms be used for the resolution of the source localizationinverse problem. In the first section we
introduce the principles of compressive sampling. The nextsection outlines the implementation of
CS for source localization; numerical simulations and experimental results are presented. Afterwards
we focus on the case of near-field where it can be expected to get a more precise description of the
involved sources. Therefore In the final section, an additional decomposition domain is considered
assuming that the sources can be described on a spherical harmonic basis. Thus the CS method is
improved so as to allow source identification in terms of multi-poles; numerical results are presented.

2. Sparsity and Compressive Sampling

2.1 Principles

In the standard way, recording a signal consists in a uniformsampling at the Nyquist rate. This
involves a large amount of data throughput when the signal tobe acquired holds high frequency com-
ponents. Often following acquisition, the signal undergoes a compression step so as to discard the
redundant information. This step is particularly efficientwhen the considered signal is sparse in a
basis to be identified. Then it can be represented with a smallnumber of coefficients without infor-
mation loss. Compressive Sampling (CS) is a new data acquisition technique that aims to compress
the signal directly at the recording stage by picking only a limited amount of samples. Thus, pro-
vided that the signal of interest is sparse, CS theoreticallyallows it to be under sampled far below the
Nyquist rate . In the ideal case, this sparsity can be expressed in an orthogonal basis; more generally
a dictionary made of redundant vectors can be used. For example, let s be a signal of dimensionN ,
sparse in a dictionaryD = [d1 . . .dn . . .dN ]. s can be written:

s =
N
∑

n=1

xndn (1)

wherex = [x1 . . . xn . . . xN ]
T is the representation ofs in the dictionaryD. The signals is said to be

K − sparse when justK coefficients inx are non-zero (K � N ) , i.e s is a linear combination of
K components ofD. The aim of CS is to reconstruct the sparse vectorx from a few measurements
y = [y1 . . . ym . . . yM ], (M � N ). LetΦ be the transfer matrix froms to y (y = Φs), of dimension
M ×N , andΘ be the transfer matrix between the measurement vectory and the source vectorx. In
order to identifyx, the problem to be inverted writes:

y = Θx where Θ = ΦD (2)

For a specific application, a crucial point is the choice of a relevant reconstruction dictionaryD.
Besides, it has been shown that ifΘ is incoherent, the vectorx can be reconstructed using only
M = O (Klog (N/K)) measurements [4]. It is also known that this incoherence property of Θ
can be guaranteed simply by choosing a random distribution of the measurement set. Finally, since
the system in Eq.2 is highly under-determined, dedicated algorithms have to be used to recover the
sparsest solution. The design of such sparsity-promoting algorithms is a huge emerging research field.
The next section describes such algorithms that were used for the present work.
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2.2 Sparsity-promoting algorithms

A first class of algorithms formulates the sparse decomposition problem as the minimization of
the`0-norm of the vectorx which yields :

min
x

||x||0 s.t. y = Θx (3)

where||x||0 is the number of non-zero components ofx. However, the non-convexity of thè0-norm,
and the approximate nature of the representation in most practical cases, make it a difficult optimiza-
tion problem. In the general case indeed, exhaustive searchis excluded . Yet, recent advances in
signal processing showed that this problem may advantageously be replaced by the following state-
ment involving thè 1-norm known as the Basis Pursuit Denoising framework [5]:

min
x

||x||1 s.t. ||y −Θx||22 ≤ ε (4)

where||x||1 =
∑

K

k=1 |xk| andε is a specific error rate .
In a second class of algorithms called the “greedy” algorithms, one finds Orthogonal Matching

Pursuit (OMP) [6]. It addresses the sparse optimization problem by a recursive process. At each iter-
ation, a component of the signalx is selected by correlation of the measurementy with the columns
of Θ. Its contribution is extracted fromy by means of an orthogonal projection providing a residual.
The process is iterated until the desired number of selectedcomponents is reached. This number
being the sparsity of the signal to reconstruct. The preciseimplementation of OMP to our case is
presented section 3.2.

3. Methods for sources localization

3.1 Problem formulation and standard beamforming

Let y be the vector of stationary pressure signals received by an array of M sensors (m =
1 . . .M) from an unknown number of harmonic sources. Let the vectorx describe reconstruction
domain supposed to contain the sources.x is composed ofN grid pointsxn (n = 1 . . . N). y writes:

y = Ax+ ε (5)

A = [a1 . . . an . . . aN ] is the steering matrix.ε depicts noise. Standard near-field beamforming
considers sources as monopolesi.e omnidirectional sources. The steering vector from thenth target
grid point to every sensor position thus writes:

an =
(

e
−jk|r1n|

|r1n|
. . . e

−jk|rmn|

|rmn|
. . . e

−jk|rMn|

|rMn|

)T

, n = 1 . . . N (6)

The use of the cross spectral matrix (CSM), denotedR in the following, has proved to make more
robust the beamforming technique [1]. At a given frequencyf , R writes :

R(f) = E[y(f)yH(f)] (7)

E[] is the expectation operator and the upper scriptH denotes the conjugate transpose.
SBF produces a map of the acoustic power over the reconstruction domain. This power mapP

is derived as:
P = diag[AHRA] (8)

The sources are located at the maxima ofP. This simple technique has two essential limitations.
The resolution of the technique is dependant on the array dimensions with respect to the wavelength
(larger the array better the resolution). In parallel spatial aliasing occurs when the array step is lower
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than half the wave length, thus imposing a large number of microphones to be used in order to avoid
the location of ghost sources. Note that the sensors distribution must be carefully designed since it
sets the level of secondary lobes in the radiation pattern which drive the acoustic maps dynamics, that
is to say the ability of the system to resolve sources with different levels.

An attempt to improve SBF proceeds by solving an`2-norm minimization problem. The so-
lution is derived via the classical Tikhonov regularization method. But this finally does not improve
SBF, exhibiting on the contrary a poorer dynamics. Going on with optimization and regularization,
a strategy based on the`1-norm minimization has been chosen instead in what is calledthe “Gener-
alized inverse beamforming” [7]. It assumes that the numberof sources is small that is to say that
the source distributionx is sparse. This formulation provides satisfying results but involves relatively
computational ressources.

With another approach, the well known MUSIC and CAPON methodsprovide high resolution
maps of the acoustic power. These methods show to be successful when the signal to noise ratio is
high, the involved sources are uncorrelated and the number of sensors is sufficient.

3.2 The sparse way

In this section we propose the use of sparsity-promoting methods, that can be taken advantage
of in order to derive compressive sampling and reduce the number of required sensors and yet be able
to achieve high resolution source localization.

A preliminary process consists in computing the eigenvaluedecomposition of the matrixR in
order to extract the signal subspace. This decomposition writes :

R = UΛUH (9)

Λ andU are the diagonal matrix of eigenvalues ofR and the associated matrix of eigenvectors
respectively. In the case of (coherent ?) harmonic sources,it should be noted that the signal subspace
is made of a sole eigenvectorus associated with the maximum eigenvalueλs. All the sources share
the same eigenvector and the relevant signaly is given by the following projection:

y =
√

λsus (10)

We now seek to isolate the different sources in the spatial domain described by the target vector
x using a compressive sampling method. The relation between the target domain and the signaly

expresses :
y = Θx (11)

According to the principles of CS listed in section 2.1, the matrix Θ decomposes into a transfer matrix
Φ and a dictionaryD defining the sparsity domain of the sources. In our case this domain is the spatial
domain : a few positions in space contain the sources. There is no need of a particular dictionary and
D will be chosen as the identity operator. As for the transfer matrixΦ it simply equals the propagation
operator or matrix of steering vectorsA defined in Eq.6 :Θ = A.

In solving this problem of source localization, the OMP algorithm described in section 2.2
proves to be the more efficient and presents lower computational costs when compared to the`1-norm
minimization. The algorithm is implemented as follows:

1. Initialize the residualr0 = y and set the iteration counterl to 1

2. Select the most correlated target pointl : l = argmax
i

|aH
i rl|

3. Remove the orthogonal projection ofrl in the space spanned by{aj, j = 1 . . . l} to getrl+1
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4. Iteratel = l + 1 until the numberL of expected sources is reached

Finally, the estimated sources position are the selected target pointsxl, l = 1 . . . L associated
with the steering vectorsal.

Let us stress out that the algorithm implies the choice of theparameterL which is the desired
sparsity of the signal to reconstruct i.e in our case, the actual number of sources. Yet this parameter
is unknowna priori. However, monitoring thè2-norm of the residue‖rl‖2 at each iteration allows
stopping the algorithm when a significant drop is observed. When all the sources have been selected
indeed,‖rl‖2 vanishes to zero.

3.3 Simulation and experimental results

Figure 1. Microphone array (black dots) at 5m from the source plane (blue dots). a) Full set of 120
microphones. b) CS antenna of 30 microphones - random draw among the complete set

This section presents results of source localisation usingcompressive sampling compared to
SBF using the arrays drawn on Fig. 1. The set-up describes as follows. Three sources are located
in a vertical plane 5m away from the vertical plane array of 120 microphones (1-a). The central
loudspeaker is a B&K type 4295 omnidirectional source. The two lateral sources baffled loudspeakers
with a 10cm radius membrane. The whole set-up was located in an anechoic chamber providing free
field conditions. The signal driving the sources is a 5s duration white noise. A cross power spectral
density is processed averaging 190 FFT blocks on each sensorsignal. This provides spectral data
from which the CSM matrixR can be computed at any frequency of interest. On Fig.2, we compare
the results of source localization using SBF (background grey scale map with a 15dB dynamics) and
CS using the OMP algorithm (red crosses). The true sources location is indicated by the blue circles.
The first row exhibits numerical simulations, the second row, the results obtained from experimental
measurements and processed using the complete 120 microphones array. For the third row a random
set of 30 microphones drawn among the complete set (see Fig.1-b) was used. Three frequencies are
studied according to columns : 1kHz, 2.5kHz and 6kHz.

Concerning the SBF maps obtained using the complete array, at 1kHz the intrinsic resolution
is about 40cm and the sources being 75cm apart are difficult toseparate. At the 2.5kHz medium
frequency, the resolution allows to distinguish and locatethe three sources quite accurately. At 6 kHz,
side lobes arise rendering a noisy sound map with poor dynamics and low level ghost sources, even
if the actual sources are well identified. For the three frequencies, when using the strongly under-
sampled 30 microphones CS array (third row), the resulting high rate of grating lobes makes source
localization impossible.

Whatever the frequency and the number of microphones used, the sparsity-promoting method
provides a location of the three sources studied with less than a 10cm error (the target grid step is
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Figure 2. Comparison of source localization processes at three frequencies : Background SBF sound
maps (15dB dynamics grey scale) - Sparse reconstruction using OMP (red crosses) - Actual sources location
(blue circles) - a) Numerical simulation b) Experimental results using the complete 120 microphones array c)
Experimental results using a CS 30 microphones array

4.2cm). The poorer results occur at 1KHz with the complete array and at 6KHz using the CS array.
Note that reducing the number of microphones (1kHz - 30 microphones) reduces the error. Further
experiments have to be led in order to understand the relevant parameters of these results. At 6 kHz
the CS array is probably too highly under-sampled to keep a good accuracy. Nevertheless it shows an
acceptable accuracy.

4. Source identification

4.1 Multipoles description

In the near-field, a large array of sensors can be sensitive tothe directivity of the sources, and it
can be expected to identify their nature more precisely. However, for complex sources, an other more
realistic model has to be defined. As suggested in the literature [8] we propose to use a multipole
radiation model. Deriving the wave equation in spherical coordinates, it can be shown that at any
point in the free field, the sound pressure radiated from a source can be described as a sums of
multipoles. This writes:

p(r, θ, φ, k) =
∞
∑

n=0

n
∑

m=−n

Cmn(k)h
(1)
n
(kr)Y m

n
(θ, φ) (12)

TheY m

n
(θ, φ) denotes the spherical harmonic of ordern and degreem. h(1)

n
(kr) is the asso-

ciated outgoing radial Hankel function of the first kind of ordern . The coefficientCmn(k) is the
corresponding multipole component strength. This approach has already been used to extend the SBF
method to multipolar sources [9]. However it has not shown tobe successful in terms of dynamics.
In the following we propose an other method based on sparsity.
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4.2 Source identification algorithm

The algorithm described in section 3.2 is modified to take into account the multipole compo-
nents. For of a target pointl, at positionrl, the radiation pattern of degreem and ordern is denoted
Jlnm = h(1)

n
(krl)Y

m

n
(rl). The multipole component strengthClmn is to be identified. When the spher-

ical harmonics identification scheme is restricted to orderN , the multipoles sub-space associated to
the target pointl expressesAl = [Jl11 . . .Jlnm . . .JlNM] . The previous OMP algorithm is improved
so as to integrate orthogonalized multipole functions. Thenew “Group OMP” algorithm processes
according to the following steps :

• Initialize the residualr0 = y and set the iteration counterl = 1

• Select the target pointl which verify l = argmax
i

∥

∥

∥AH
i rl

∥

∥

∥

• Remove the orthogonal projection ofrl on every elements of the sub-spaceAl

• Iteratel = l + 1 until the numberL of sources is reached

Finally, the estimated sources position are the selected target pointsl = 1 . . . L . The contribution of
each multipole, element of the sub-spacesAl (l = 1 . . . L) are listed in the vectorx = AH

l y.

4.3 Numerical simulations

For our numerical experiment, we use the following directivity patterns: a monopole denoted
M, two dipoles: D1 in thex direction (see Fig. 1 for the coordinate system), D2 in they direction,
and a quadripole Q1 of degree 1 (order 2) in thexy plane. For the simulation the sources consists
of two point sources with complex radiation pattern emitting harmonically at 1KHz. The first source
is made of a dipole D1 with a 0dB amplitude, and a dipole D2 witha -1dB amplitude. The second
source is made of a monopole M with a -3dB amplitude and a quadripole Q1 with a -1dB amplitude.
Fig. 3 exhibits the sources localization with their respective identification terms. The localization is
very accurate for both sources and the identification is correct as well showing a dynamic over 20dB
between the true components and the fake ones.

Figure 3. Simulation at 1KHz a). Localization map (blue circles pointing at the actual sources positions) b).
Multi-pole coefficient estimation for the1st source at [-1.03,-0.55] c). Multi-pole coefficient estimation for the
2
nd source at [1.55,1.40]

However, the ability of the algorithm to identify accurately a source is strongly dependant on
the grid fineness. If the grid is too rough, no grid point fits the actual sources position and the
identification fails. Since the computational cost increases significantly with the number of points
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in the target domain, the grid fineness has to be limited. The idea is thus to refine the grid around
the source position estimated at the first iteration, and refine the grid in that way at each iteration
until some stabilization arises. Moreover the “ Group OMP” algorithm appears to be very sensitive to
noise. The first attempts to apply it to the previous measurements were not promising.

5. Conclusion

In our objective of source localization, preliminary results have shown that using sparsity-
promoting algorithm associated to compressive sampling with a low number of randomly distributed
microphones, good results were obtained. Further leads areto be explored in order to evaluate the
limitations of the method and appreciate the results with smaller-aperture arrays. Concerning the
source identification scheme, the adopted strategy produces good results only for ideal cases. There-
fore alternative algorithms have to be investigated to makethe estimation more robust to noise. A
trail could be a “grouped sparsity” algorithm using jointly`1- and`2- norm minimisations.
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