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“Compressive sampling” (CS) is a new signal acquisition sgratthat intends to reduce sig-
nificantly the amount of recorded data by picking only a ledihumber of samples. CS theory
asserts that one can reconstruct a given signal from a fesdonaly distributed samples if only
the signal is sparse in a proper basis. CS ensures a minimgroflaformation but requires,
for the reconstruction of the signal, the use of dedicateissty-promoting algorithms. In this
paper, CS is applied to the source localization problem usmarray of randomly distributed
microphones. In this case, the signal of interest is sparsigel spatial domain, i.e a few po-
sitions in space contain sources. We focus on the near-feglchforming where the array of
sensors is sensitive to the sources directivity. The lsatibn method is extended to complex
sources and we attempt to identify them in terms of multipoldumerical simulations and
experimental results prove this sparsity-promoting metiocbe powerful for source localiza-
tion. However the identification step, quite successfuldeal data, is not sufficiently robust
when applied to experimental data and need further invasbigs.

1. Introduction

The present work investigates the use of compressive sagngichniques for acoustic sources
localization and identification. The localization problésmmost commonly solved by the standard
beamforming technique [1] (SBF) using an array of microplsoiies main advantages are flexibility
and straightforward implementation. It involves spegtralcessing and uses cross-spectral matrices
(CSM) and phase shifting in order to provide maps of the sountehsity in the so called recon-
struction space. However this standard method presentdbdcks. It suffers from a resolution limit
which is proportional to the wave length to array dimensiatior Moreover the directivity pattern of
the array may present grating lobes if the array step is tglo With respect to the wave length. This
may reveal non-existent sources. Using a large number gbsgmay allow overcoming these lim-
itations but would induce complex issues of synchronizataalibration, A/D conversion, and total
data throughput. Other techniques achieving super resolnive been derived such as MUSIC [2], a
subspace-based method, or CAPON method [3]. However thabedsdail when correlated sources
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are to be localized and are not made free from using a largelatnod sensors. Compressive sam-
pling [4] (CS) techniques, recently emerging from appliedhmenatics, intend to reduce significantly
the amount of data throughput when recording time signaspatial fields without loss of informa-
tion, thus allowing source reconstruction from a limitedadset. However, CS requires on one hand
that the recorded signal or field be sparse and on the other than specific reconstruction algo-
rithms be used for the resolution of the source localizaithmerse problem. In the first section we
introduce the principles of compressive sampling. The sextion outlines the implementation of
CS for source localization; numerical simulations and expental results are presented. Afterwards
we focus on the case of near-field where it can be expected @ gp@re precise description of the
involved sources. Therefore In the final section, an aduti@ecomposition domain is considered
assuming that the sources can be described on a spheriocabinarbasis. Thus the CS method is
improved so as to allow source identification in terms of mudles; numerical results are presented.

2. Sparsity and Compressive Sampling

2.1 Principles

In the standard way, recording a signal consists in a unifampling at the Nyquist rate. This
involves a large amount of data throughput when the signa¢ tacquired holds high frequency com-
ponents. Often following acquisition, the signal undegyaecompression step so as to discard the
redundant information. This step is particularly efficiavtien the considered signal is sparse in a
basis to be identified. Then it can be represented with a smailber of coefficients without infor-
mation loss. Compressive Sampling (CS) is a new data acguisgchnique that aims to compress
the signal directly at the recording stage by picking onlynaited amount of samples. Thus, pro-
vided that the signal of interest is sparse, CS theoretiedilbyvs it to be under sampled far below the
Nyquist rate . In the ideal case, this sparsity can be expdassan orthogonal basis; more generally
a dictionary made of redundant vectors can be used. For dgalafs be a signal of dimensior,
sparse in a dictionarfp = [d; ... d, ... dy]. s can be written:

N
s = Z T, dn (1)
n=1

wherex = [z, ...x,...zy]T is the representation &fin the dictionaryD. The signak is said to be
K — sparse when justK coefficients inx are non-zero < N), i.es is a linear combination of
K components oD. The aim of CS is to reconstruct the sparse vegtinom a few measurements
Y=1[v1- - Ym-.-yu], (M < N). Let ® be the transfer matrix fromtoy (y = ®s), of dimension
M x N, and® be the transfer matrix between the measurement vecamd the source vectar. In
order to identifyx, the problem to be inverted writes:

y = 0Ox where © =®D (2)

For a specific application, a crucial point is the choice oktkevant reconstruction dictionar®.
Besides, it has been shown thatdf is incoherent, the vectat can be reconstructed using only
M = O (Klog (N/K)) measurements [4]. It is also known that this incoherenceqitg of ©
can be guaranteed simply by choosing a random distribufidheomeasurement set. Finally, since
the system in EQ.2 is highly under-determined, dedicatgdrahms have to be used to recover the
sparsest solution. The design of such sparsity-promotgagithms is a huge emerging research field.
The next section describes such algorithms that were useédd@resent work.
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2.2 Sparsity-promoting algorithms

A first class of algorithms formulates the sparse decomiposiroblem as the minimization of
the /y-norm of the vectok which yields :

min|[x[[o st y=0Ox (3)

where||x||, is the number of non-zero componentsofHowever, the non-convexity of thig-norm,
and the approximate nature of the representation in mostipahcases, make it a difficult optimiza-
tion problem. In the general case indeed, exhaustive searekcluded . Yet, recent advances in
signal processing showed that this problem may advantagieba replaced by the following state-
ment involving the/;-norm known as the Basis Pursuit Denoising framework [5]:

min[x|li st [y —©x|};<e (4)

where||x||; = S5, |;| ande is a specific error rate .

In a second class of algorithms called the “greedy” algarghone finds Orthogonal Matching
Pursuit (OMP) [6]. It addresses the sparse optimizatioblgra by a recursive process. At each iter-
ation, a component of the signalis selected by correlation of the measurememtith the columns
of ©. Its contribution is extracted from by means of an orthogonal projection providing a residual.
The process is iterated until the desired number of selextetponents is reached. This number
being the sparsity of the signal to reconstruct. The preiog#ementation of OMP to our case is
presented section 3.2.

3. Methods for sources localization

3.1 Problem formulation and standard beamforming

Let y be the vector of stationary pressure signals received byray af M sensors (m =
1...M) from an unknown number of harmonic sources. Let the vextdescribe reconstruction
domain supposed to contain the sources composed ofV grid pointsz,, (n = 1...N). y writes:

y=Ax+¢ (5)

A = [a;...a,...ay] is the steering matrix.e depicts noise. Standard near-field beamforming
considers sources as monopalesomnidirectional sources. The steering vector fromstHetarget
grid point to every sensor position thus writes:

—jklryp] —jk|rmn| —iklrprnl T
a, = (o e elBel )Ty = 1N (6)

‘Tln‘ ‘Tmn| |7’1\/1n‘

The use of the cross spectral matrix (CSM), dendgeth the following, has proved to make more
robust the beamforming technique [1]. At a given frequeficiR writes :

R(f) = Ely(f)y" (/)] )

E[] is the expectation operator and the upper sdiiftenotes the conjugate transpose.
SBF produces a map of the acoustic power over the reconstnudimain. This power map
is derived as:
P = diag][A"RA] (8)

The sources are located at the maximaPof This simple technique has two essential limitations.
The resolution of the technique is dependant on the arragmsions with respect to the wavelength
(larger the array better the resolution). In parallel spatiiasing occurs when the array step is lower
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than half the wave length, thus imposing a large number ofaplmones to be used in order to avoid
the location of ghost sources. Note that the sensors disisibmust be carefully designed since it
sets the level of secondary lobes in the radiation patteraiwdrive the acoustic maps dynamics, that
is to say the ability of the system to resolve sources witferght levels.

An attempt to improve SBF proceeds by solving/amorm minimization problem. The so-
lution is derived via the classical Tikhonov regularizatimethod. But this finally does not improve
SBF, exhibiting on the contrary a poorer dynamics. Going aih wptimization and regularization,
a strategy based on tlig-norm minimization has been chosen instead in what is céledGener-
alized inverse beamforming” [7]. It assumes that the nunabesources is small that is to say that
the source distributionr is sparse. This formulation provides satisfying resultsiiolves relatively
computational ressources.

With another approach, the well known MUSIC and CAPON mettmdside high resolution
maps of the acoustic power. These methods show to be sugicesn the signal to noise ratio is
high, the involved sources are uncorrelated and the nunflsensors is sufficient.

3.2 The sparse way

In this section we propose the use of sparsity-promotindhous, that can be taken advantage
of in order to derive compressive sampling and reduce théoeuf required sensors and yet be able
to achieve high resolution source localization.

A preliminary process consists in computing the eigenvdkmomposition of the matriR. in
order to extract the signal subspace. This decompositidesvr

R = UAU" 9)

A and U are the diagonal matrix of eigenvalues Rfand the associated matrix of eigenvectors
respectively. In the case of (coherent ?) harmonic souitcgsould be noted that the signal subspace
iIs made of a sole eigenvectar associated with the maximum eigenvalue All the sources share
the same eigenvector and the relevant signialgiven by the following projection:

y =, (10)

We now seek to isolate the different sources in the spatialaiio described by the target vector
x using a compressive sampling method. The relation betweetarget domain and the signal
expresses :

y = Ox (11)

According to the principles of CS listed in section 2.1, thénwma® decomposes into a transfer matrix
® and a dictionaryD defining the sparsity domain of the sources. In our case tmsh is the spatial
domain : a few positions in space contain the sources. There need of a particular dictionary and
D will be chosen as the identity operator. As for the transfatrin ® it simply equals the propagation
operator or matrix of steering vectafsdefined in Eq.6 ® = A.

In solving this problem of source localization, the OMP aition described in section 2.2
proves to be the more efficient and presents lower compuotdtemsts when compared to thenorm
minimization. The algorithm is implemented as follows:

1. Initialize the residuaty = y and set the iteration countéto 1

2. Select the most correlated target pdint = arg max |af'r|

3. Remove the orthogonal projectiongfin the space spanned Ky;, j = 1...[} to getr; 4
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4. Iteratel = [ + 1 until the numbell. of expected sources is reached

Finally, the estimated sources position are the selectgdttpointsz;, [ = 1... L associated
with the steering vectors;.

Let us stress out that the algorithm implies the choice ofpd@ameter’, which is the desired
sparsity of the signal to reconstruct i.e in our case, theahectumber of sources. Yet this parameter
is unknowna priori. However, monitoring thé,-norm of the residudr,||, at each iteration allows
stopping the algorithm when a significant drop is observedeidll the sources have been selected
indeed,||r;||, vanishes to zero.

3.3 Simulation and experimental results

a) b)

Figure 1. Microphone array (black dots) at 5m from the source plane (blue.dmt$ull set of 120
microphones. b) CS antenna of 30 microphones - random draw amongripete set

This section presents results of source localisation usamgpressive sampling compared to
SBF using the arrays drawn on Fig. 1. The set-up describedlaw$o Three sources are located
in a vertical plane 5m away from the vertical plane array dd hdcrophones (1-a). The central
loudspeaker is a B&K type 4295 omnidirectional source. Thelateral sources baffled loudspeakers
with a 10cm radius membrane. The whole set-up was located amachoic chamber providing free
field conditions. The signal driving the sources is a 5s domathite noise. A cross power spectral
density is processed averaging 190 FFT blocks on each seigg@l. This provides spectral data
from which the CSM matriXR can be computed at any frequency of interest. On Fig.2, wepaoen
the results of source localization using SBF (backgrounyg gecale map with a 15dB dynamics) and
CS using the OMP algorithm (red crosses). The true sourcatidods indicated by the blue circles.
The first row exhibits numerical simulations, the second, ttv results obtained from experimental
measurements and processed using the complete 120 miacexphoay. For the third row a random
set of 30 microphones drawn among the complete set (seelbigvas used. Three frequencies are
studied according to columns : 1kHz, 2.5kHz and 6kHz.

Concerning the SBF maps obtained using the complete arraigHzat the intrinsic resolution
Is about 40cm and the sources being 75cm apart are difficdeparate. At the 2.5kHz medium
frequency, the resolution allows to distinguish and lotlagethree sources quite accurately. At 6 kHz,
side lobes arise rendering a noisy sound map with poor dyssaand low level ghost sources, even
if the actual sources are well identified. For the three fesgies, when using the strongly under-
sampled 30 microphones CS array (third row), the resultigh hate of grating lobes makes source
localization impossible.

Whatever the frequency and the number of microphones usedp#rsity-promoting method
provides a location of the three sources studied with leas th10cm error (the target grid step is
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Figure 2. Comparison of source localization processes at three frequenciekg®and SBF sound
maps (15dB dynamics grey scale) - Sparse reconstruction using Oller@sses) - Actual sources location
(blue circles) - a) Numerical simulation b) Experimental results using the coenpRd microphones array c)
Experimental results using a CS 30 microphones array

4.2cm). The poorer results occur at 1KHz with the completayaand at 6KHz using the CS array.
Note that reducing the number of microphones (1kHz - 30 rpicomes) reduces the error. Further
experiments have to be led in order to understand the rdl@amameters of these results. At 6 kHz
the CS array is probably too highly under-sampled to keep d goouracy. Nevertheless it shows an
acceptable accuracy.

4. Source identification

4.1 Multipoles description

In the near-field, a large array of sensors can be sensitiveetdirectivity of the sources, and it
can be expected to identify their nature more precisely. él@w for complex sources, an other more
realistic model has to be defined. As suggested in the litexrd8] we propose to use a multipole
radiation model. Deriving the wave equation in sphericardmnates, it can be shown that at any
point in the free field, the sound pressure radiated from acsocan be described as a sums of
multipoles. This writes:

p(r, 0,0,k Z Z Coran ()R (EP)Y™(0, ) (12)

=0m=-—n

The Y, (6, ¢) denotes the spherical harmonic of ordeand degreen. h{!(kr) is the asso-
ciated outgoing radial Hankel function of the first kind oflern . The coefficient’,,,, (k) is the
corresponding multipole component strength. This apgrbas already been used to extend the SBF
method to multipolar sources [9]. However it has not showhdsuccessful in terms of dynamics.
In the following we propose an other method based on sparsity
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4.2 Source identification algorithm

The algorithm described in section 3.2 is modified to take axtcount the multipole compo-
nents. For of a target point at positionr;, the radiation pattern of degree and ordem is denoted
Jinm = bV (kr) Y™ (). The multipole component strength,,,, is to be identified. When the spher-
ical harmonics identification scheme is restricted to omlethe multipoles sub-space associated to
the target point expresse#\; = [Ji11 - . . Jiam - - - Jinm] - The previous OMP algorithm is improved
SO as to integrate orthogonalized multipole functions. e “Group OMP” algorithm processes
according to the following steps :

¢ Initialize the residuaty = y and set the iteration countee= 1

o Select the target poiritwhich verify I = arg max HAFrlH

e Remove the orthogonal projectiongfon every elements of the sub-spake
e lteratel = [ + 1 until the numbelr of sources is reached

Finally, the estimated sources position are the selectgédttpoints = 1... L . The contribution of
each multipole, element of the sub-spadgq/ = 1... L) are listed in the vectaxt = Afly.

4.3 Numerical simulations

For our numerical experiment, we use the following dirattiyatterns: a monopole denoted
M, two dipoles: D1 in ther direction (see Fig. 1 for the coordinate system), D2 ingldrection,
and a quadripole Q1 of degree 1 (order 2) in iheplane. For the simulation the sources consists
of two point sources with complex radiation pattern emgttirmrmonically at 1KHz. The first source
Is made of a dipole D1 with a 0dB amplitude, and a dipole D2 witlidB amplitude. The second
source is made of a monopole M with a -3dB amplitude and a dqualdrQ1 with a -1dB amplitude.
Fig. 3 exhibits the sources localization with their respecidentification terms. The localization is
very accurate for both sources and the identification iseobrs well showing a dynamic over 20dB
between the true components and the fake ones.

a) Sources localization b) Source 1 c) Source 2
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Figure 3. Simulation at 1KHz a). Localization map (blue circles pointing at the actuatesypositions) b).
Multi-pole coefficient estimation for th&! source at [-1.03,-0.55] c). Multi-pole coefficient estimation for the
274 source at [1.55,1.40]

However, the ability of the algorithm to identify accurat@ source is strongly dependant on
the grid fineness. If the grid is too rough, no grid point fite thctual sources position and the
identification fails. Since the computational cost incesasignificantly with the number of points
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in the target domain, the grid fineness has to be limited. @ka is thus to refine the grid around
the source position estimated at the first iteration, andeete grid in that way at each iteration
until some stabilization arises. Moreover the “ Group OMRjbaithm appears to be very sensitive to
noise. The first attempts to apply it to the previous measeargsnwere not promising.

5. Conclusion

In our objective of source localization, preliminary rdsuhave shown that using sparsity-
promoting algorithm associated to compressive sampliniy &low number of randomly distributed
microphones, good results were obtained. Further lead®dre explored in order to evaluate the
limitations of the method and appreciate the results witlallnaperture arrays. Concerning the
source identification scheme, the adopted strategy predymed results only for ideal cases. There-
fore alternative algorithms have to be investigated to nthkeestimation more robust to noise. A
trail could be a “grouped sparsity” algorithm using joingly and/,- norm minimisations.
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