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Low Frequency Interpolation of Room Impulse
Responses using Compressed Sensing

Rémi Mignot, Gilles Chardon, Laurent Daudet

Abstract—Measuring the Room Impulse Responses within a
finite 3D spatial domain can require a very large number of
measurements with standard uniform sampling. In this paper,
we show that, at low frequencies, this sampling can be done with
significantly less measurements, using some modal properties of
the room. At a given temporal frequency, a plane wave approx-
imation of the acoustic field leads to a sparse approximation,
and therefore a compressed sensing framework can be used
for its acquisition. This paper describes three different sparse
models that can be constructed, and the corresponding estimation
algorithms: two models that exploit the structured sparsity
of the soundfield, with projections of the modes onto plane
waves sharing the same wavenumber, and one that computes
a sparse decomposition on a dictionary of independent plane
waves with time / space variable separation. These models are
compared numerically and experimentally, with an array of 120
microphones irregularly placed within a 2×2×2 m volume inside a
room, with an approximate uniform distribution. One of the most
challenging part is the design of estimation algorithms whose
computational complexity remains tractable.

Index Terms—Compressed Sensing, Room Impulse Responses,
Wavefield reconstruction, Plane waves, Interpolation, Sparsity.

I. I NTRODUCTION

A COUSTIC properties of a reverberating room can be
given by analyzing its Room Impulse Responses (RIRs),

which describe the acoustic transfer between sources and
receivers. In [1], the concept ofPlenacoustic Function(PAF)
is introduced. This function gathers all RIRs of the room, and
therefore it depends on time, on the source position, on the
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receiver position and on the room characteristics (geometry
and wall properties).

On one hand, in some applications the effect of room
reverberation is undesirable. For example, most of micro-
phone array techniques and multi-loudspeaker systems are
based on free field models and their performance decrease
with reverberation. On the other hand, reverberation plays
an important role in auditory scene synthesis, e.g. in virtual
reality framework. In both cases, having all RIRs of the room
could potentially be used to improve their performance or their
realism.

Measuring the PAF is fundamentally a sampling problem:
from a limited number of point measurements, the goal is
to reconstruct (i.e. interpolate) the acoustic wavefield atany
position in space and at any time.

Standard acquisition of signals relies on a regular sampling
of space and time with respect to Shannon-Nyquist theory. Ata
given temporal frequency, the space sampling has to be dense
enough to avoid aliasing in reconstruction and interpolation
[1]. However, as we shall see later, such a direct measurement
of a time-varying 3D image often requires an extremely
high number of microphones. Nevertheless, informed by the
physical nature of the measured signal, we can reduce the
number of sampling locations, even for rooms with unknown
geometry. This number is directly linked to the number of mi-
crophones if one wants to acquire the signals simultaneously,
in a microphone array setting. In ref. [2] a method based on
Dynamic Time Warping is used for the interpolation of the
early part of the RIRs. Another example is given in ref. [3]
that uses an acoustic model of rooms. This model is based on
the modal theory and assumes that all RIRs share the same
damped complex sinusoids (associated to common poles) with
different amplitudes (residues). After the estimation of poles,
their residues are estimated for each source position on a line
considering a space dependency as a cosine function. Whereas
the first method of [2] can interpolate the early part of the
RIRs, the second one of [3] is adapted to the interpolation of
the whole RIRs at low frequencies along a line.

In this paper we study the sampling and the interpolation
of RIRs, at low frequencies, within a whole 3D domainΩ of
the space, using theCompressed Sensing(CS) paradigm: this
principle allows the reconstruction of signals from a limited
number of measurements, if the signal is sparse (exactly
or approximately) in some domains. In the case of room
acoustics, this sparsity property is based on the modal theory.
Although based on a different principle, the proposed method
can be seen as an extension of ref. [3], adapted for 3D
domains. It is important to note that this 3D interpolation is
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here performed without the explicit knowledge of the room
shape - that should only satisfy some general assumptions
detailed in sections III and IV.

The outline of this paper is as follows. Section II recalls the
basics of uniform sampling, and discusses how it applies to the
sampling of the 4D-FT spectrum of the PAF (3D in space, 1D
in time). We observe that in the case of a 3D sampling of the
space, the spectrum essentially lies on a 3D hypersurface, and
not in the whole 4D volume. In section III, this observation is
accounted for by theoretical results. A first sparsity property of
the PAF is exhibited and a first approach is proposed to sample
it within a 3D volume with few measurements. In section IV, a
second sparsity model is derived, based the modal analysis of a
rectangular room. This model allows the use of aCompressed
Sensing framework for the sampling. Section V presents
some details on the proposed algorithm implementations. In
particular, some strategies must be designed to circumventthe
large computational requirements of the algorithm. Numerical
and experimental results are presented in section VI, and show
the relevance of this approach in practical settings. Concluding
remarks are finally presented in section VII.

The sparse model and a small subset of the results have
previously been presented in a conference paper [4]. The main
novelties of this paper are: a better theoretical justification
of the model, more detailed explanation of the proposed
algorithms, the use of cross-validation in section III-C, and
a deeper analysis of the experimental data.

II. U NIFORM SAMPLING

The Green’s function, for the wave equation with boundary
conditions, gives a complete description of the acoustic trans-
fer between any source and receiver, within a given room. In
[1], it is renamed Plenacoustic Function (PAF), and it can be
described as the set of all Room Impulse Responses (RIRs),
for all source / receiver positions. Note that, due to reciprocity
properties, if sources and receivers are omnidirectional,they
play symmetric roles.

In this section, considering a fixed source (as this corre-
sponds to our experimental setup), we recall how standard
sampling of the PAF can be done within a volumeΩ of the
space, using a uniform 3D microphone array, as a function of
the position ~X = [x, y, z]T of the receiver.

The primary design parameter is the temporal bandwidth
that is required for the applications at hand. If the maximum
frequency is fixed atfc [Hz], higher frequencies are removed
with an anti-aliasing low-pass filter and, assuming ideal filters,
the sampling in time is done at a rateFs > 2fc. Depending
on this temporal frequency bandwidth, the distance between
microphones (sampling in space) has to be small enough to
avoid spatial aliasing. In this section we present the spectrum
of the PAF to define a criterion for the sampling. The RIRs
will be denoted by the space/time dependent function:p(t, ~X).

A. Spectrum and sampling

In [1], Ajdler studied the spectrum of the PAF on a
line parallel to the(Ox) axis. With ω [rad.s−1] the tem-
poral angular frequency andϕx [rad.m−1] the spatial an-
gular frequency, he observed that the energy of the 2D-FT

p̂(ω, ϕx) = TF{p(t, x)} is mainly concentrated within the
triangle bounded by|ϕx| ≤ |ω|/c0, which corresponds to the
dispersion relation of propagative waves. Then, for growing
ϕx, he demonstrated thatp̂ decreases faster than an exponential
for |ϕx| > |ω|/c0, which corresponds to evanescent waves.
From this, he determines a sampling theorem, which describes
how to sample in space for a target Signal-to-Noise Ratio
SNR0:

2π

δx
>

2ωc

c0
+ ε(SNR0, ωc), (1)

whereδx is the spatial sampling step on the line,ωc = 2πfc
is the cutoff frequency,c0 is the sound velocity.ε(SNR0, ωc),
whose exact expression is given in [1], accounts for the influ-
ence of evanescent waves. Under the far field assumption, and
sufficiently far from the walls, evanescent waves are negligible,
which leads toε = 0. Then, in this case, the spectrum of the
PAF is included within the triangle of equationϕ2

x ≤ ω2/ c0
2,

and the sampling theorem becomes:δx < πc0/ωc.
In the case of 2D sampling (in a plane parallel to(Oxy)),

under the far field assumption, the 3D-FT of the PAF,
p̂(ω, ϕx, ϕy), has its support in the cone of equationϕ2

x+ϕ
2
y ≤

ω2/c20, whereϕx and ϕy are the spatial frequencies along
axes (Ox) and (Oy). We have a similar result in the case
of a 3D sampling: the support of the spectrum of the PAF
p̂(ω, ϕx, ϕy, ϕz) is essentially such thatϕ2

x+ϕ
2
y+ϕ

2
z ≤ ω2/c20;

which means that it is included inside a hypercone.
Finally, in any case, to avoid spatial aliasing we have to

choose sampling steps that satisfy the sampling theorem:

δv <
πc0
ωc

, ∀v ∈ {x, y, z} . (2)

B. Reconstruction

The sampling of the PAF givesp(tn, ~Xm) for tn = n/Fs

and ~Xm on a spatial grid. The reconstruction of the RIRs for
any time and position is done using a 4D interpolation filter,
which may be separable in time and space.

In theory, the ideal reconstruction should be performed
using convolution with asinc function which has infinite
support, therefore requiring an infinite number of sampling
points, in time and space. Because of the exponential time
decay of the RIRs, the responses can be truncated in time,
and using finite length filters provides good approximations.

However, in space this problem remains, because a precise
interpolation requires an overly large number of microphones.
Actually, in order to reconstruct the RIRs within a finite
sub-domainΩ of the room, in practice there are 2 possible
strategies:

• by fixing the spatial sampling stepδ according to
Shannon-Nyquist requirements, one has to increase the
order of the 3D interpolation filter (in space) in order
to improve the reconstruction. Consequently, the micro-
phone array must be larger thanΩ, and according to
the desired quality, the number of microphones may be
unrealistic in practice.

• by fixing the size of the array, one can improve the
quality by taking a finer grid. Even if the array does not
become bigger, the number of microphones increases, and
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boundary effects may still be present. As in the previous
case, the number of microphones may become very high
in practice.

Alternatively, it is also possible to make a compromise
between these two strategies.

C. Sparse spectrum

As discussed above, for a 3D problem the support of the
spectrum of the PAF is included inside a 4D hypercone, for
which the axis of revolution is the temporal frequency axisω.

Further observations reveal that, whereas 1D or 2D sam-
plings of the space (on a line or a surface respectively) give
a full spectrum lying inside a triangle or a cone respectively,
a 3D sampling in a volume gives an almost empty spectrum,
for which the energy is concentrated on the surface of the
hypercone of equationϕ2

x+ϕ
2
y +ϕ

2
z = ω2/ c0

2. Equivalently,
for a given frequencyω, the spectrum is on the surface of the
sphere of radius|ω|/ c0, which corresponds to the set of plane
waves with wavenumber|ω|/ c0 and wavelength2π c0 /|ω|.

An equivalent observation, and somehow easier to visualize,
can be done for a 2D problem, which represents wave propa-
gations on an elastic membrane for example. Using synthetic
signals, figure 1a presents the 2D-FT spectrum of the PAF
sampled on a line. The support is a full triangle of equation
ϕ2
x ≤ ω2/c20. Figures 1(b,c,d) present 3 different sections of

the 3D-FT spectrum of the PAF sampled on a square surface.
In this 2D problem, this quasi-empty spectrum lies only on the
surface of the cone of equationϕ2

x + ϕ2
y = ω2/c20. Figure 1d

shows that for a given frequencyω, the spectrum is on the
circle of radius|ω|/ c0 which corresponds to the associated
plane waves.

As a consequence, for a 3D problem, and sufficiently far
from the source and the walls so that evanescent waves can
be neglected, the 4D-FT spectrum of the PAF sampled within
a spatial volumeΩ does not fill a 4D volume of the 4D fre-
quency space (ω, ϕx, ϕy, ϕz) but lies on a 3D surface, which
is an hypercone. The approaches of the next section exploit
this property in order to derive new sampling algorithms which
need less measurements in order to reconstruct the RIRs within
a volumeΩ of the space.

III. STRUCTURED SPARSITY

A. Modal decomposition

Considering linear acoustic propagation away from the
sources, the acoustic pressurep(t, ~X) is governed by thewave
equation

∆p(t, ~X)−
1

c02
∂2

∂t2
p(t, ~X) = 0, (3)

where∆ = ∇2 is the Laplacian operator. At low frequencies,
assuming a modal behavior for closed rooms, the solution
can be decomposed as a discrete sum of damped complex
harmonic signals with the angular frequenciesωq:

p(t, ~X) =
∑

q∈Z⋆

Aq φq( ~X) gq(t), (4)

where theAq ’s are complex coefficients,φq is the modal shape
of modeq, andgq(t) is the corresponding time evolution, with

gq(t) = ejkq c0 t = eξqt ejωqt for t ≥ 0 and gq(t) = 0 for
negative time. Finally,kq = (ωq − jξq)/c0 is the wavenumber
of mode q with ωq its angular frequency andξq < 0
its damping coefficient. Note that theωq ’s, ξq ’s and φq ’s
depend on the boundary conditions (room geometry and wall
properties), while theAq ’s depend on the initial conditions.
Because in our case the source position is not known and
the source signal is an impulse att = 0, we only consider
the homogeneous wave equation (3), without source, which
implies initial conditions int = 0.

From (3) and (4), and using the orthogonality of the func-
tions gq(t), we get the Helmholtz equation for every mode:

∆φq + k2qφq = 0. (5)

Note that the orthogonality property of the functionsgq(t) is
fully validated whenξq = 0, i.e. for ideally rigid walls. In the
case of non-rigid walls, we make the usual assumption that
eq. (5) remains valid at least far from the walls.

B. Plane wave approximation

In the Helmholtz equation,φq is the eigenmode of the
Laplacian operator with eigenvalue−k2q . For a realkq (rigid
walls), if the room is star-shaped (note that this includes
convex rooms), previous studies (cf. [5]) have shown that an
eigenmode of the Laplacian with a negative eigenvalue can be
approximated by a finite sum of plane waves incoming from
various directions, and sharing the same wavenumberk. Then

φq( ~X) ≈
∑R

r=1 aq,r e
j~kq,r· ~X (6)

is theR-order approximation ofφq, with ~kq,r the 3D wavevec-
tor r of the modeq, such that‖~kq,r‖2 = |kq|. More details are
given in appendix A. For damping walls, in theory the losses
modify φq, nevertheless we assume that the approximation (6)
remains valid, at least for~X far from the walls.

Consequently, considering a finite frequency range[0, ωc]
containingQ real modes, or equivalently2Q complex modes,
and consideringR-order approximations of theφq ’s, the RIR
p(t, ~X) can be approximated by a sum of2QR damped
harmonic plane waves,exp(j(kq c0 t+~kq,r· ~X)), with complex
wavenumberkq = (ωq − jξq)/c0 and real wavevectors~kq,r
such that‖~kq,r‖2 = |ωq|/ c0, and with coefficients linked by
the relationαq,r = Aqaq,r.

Note that this approximation, coming from [5], theoretically
validates the observation of the sparse 4D-FT spectrum of the
PAF given in section II-C. We speak aboutStructured Sparsity,
first because of the modal representation of eq. (4), which is
sparse in the time domain, and second because the 4D-FT
spectrum is concentrated on a 3D surface:for every frequency
ωq, the modal shapeφq is modeled by a sum of plane waves
for which the wavevectors lie on the sphere of radius|ωq|/ c0
only (i.e. p̂(ω,~k) ≈ 0 for ‖~k‖2 6= |ω|/ c0). But note that it
does not assume the sparsity ofφq in a dictionnary of plane
waves: the finite sum of eq. (6) is an approximation required
for computation.

In [3], the modal shape is assumed to be a cosine function on
a line (Ox), with wavenumberkx ≤ |kq|, which corresponds
to the sum of two equivalent plane waves. In this section, the
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Fig. 1. Spectrum of the PAF for a 2D problem (synthetic signals). (a): 2D-FT of the PAF sampled on a line. (b,c,d): 3D-FT of the PAF sampled on a square;
(b): ϕy=0 m−1, (c): ϕy=7 m−1, (d): f=4 kHz. As expected for a 2D problem, the sampling of the PAF on a line gives a full spectrum, and its sampling
on a 2D domain gives a sparse spectrum which lies on a cone, for which the symmetry axis is the temporal frequency axisf .

modal shape in 3D is represented, in a more general way,
as a sum ofR plane waves, which is valid with a weaker
assumption (star-shaped room).

C. Algorithm

Now, taking advantage of this Structured Sparsity, we
present an algorithm previously proposed for the interpolation
of impulse responses of plates [6]. First, using an array of
M microphones placed at the~Xm sampling points within
Ω (with uniform or random sampling, cf. sec. IV-B), we
acquire the digital signalsp(tn, ~Xm), of lengthN samples
each. Second, we can reconstruct the RIRs inΩ using the
following algorithm:

(a) The shared wavenumberskq are estimated using a joint
estimation of damped sinusoidal components (using for
example the algorithms MUSIC [7], ESPRIT [8], or
SOMP [9]). Note that this stage corresponds to a sparse
decomposition of theM signals using a joint sparsity
model along the temporal frequencies, with a dictionary
of damped sinusoids, or equivalently of common acoustic
polespq = j c0 kq in the Laplace domain.

(b) From (4), the (M ×N ) matrix S of signals, such that
S[m,n] = p(tn, ~Xm), can be written asS = ΦG, where
Φ is the (M×Q) matrix of modes,Φ[m,q] = Aqφq( ~Xm),
andG is the (Q×N ) dictionary of damped exponentials,
G[q,n] = ejkq c0 tn . Then, withQ<N , the modal shape
matrix Φ is estimated using theℓ2 optimization:

Φ̃ = PGH(GGH)−1. (7)

(c) Now from (6), φq ≈ ψqαq whereψq is the (M ×R)

matrix of the plane waves,ψq [m,r] = ej
~kq,r· ~Xm , sharing

the same wavenumberkq. The ~kq,r ’s are chosen using
a uniform sampling of the sphere of radius|ωq|/c0, cf.
[10], [11]. Then, withM>R, the coefficientsαq,r of the
vectorαq are estimated using the least squares projection
of everyφ̃q into the corresponding basis ofψq as follows:

α̃q = (ψH
q ψq)

−1ψH
q φ̃q. (8)

(d) Finally, the RIRs can be interpolated for anyt ∈
[0, N/Fs] and any position~X ∈ Ω using the approxi-
mation:

p̃(t, ~X) =
∑

q,r

α̃q,r ej(kq c0 t+~kq,r· ~X) . (9)

Note thatS is a real matrix, hence the coefficients of the
complex modes have to obey the Hermitian symmetry. This

implies:αq,r = α∗
−q,r, kq = −k∗−q and~kq,r = −~k−q,r, where

the symbol.∗ denotes the conjugate. In practice, this Hermitian
symmetry is used in stages (b) and (c) in order to reduce the
size of matrices.

In stage (c), the sphere of radius|ω|/ c0 is sampled using
R plane waves. The choice ofR is important, because a small
R produces bad approximations, but a value that is too high
(still respectingR < M ) leads to overfitting: it gives good
approximations for the measured positions of microphones,but
interpolations with poor quality. In section VI, two methods
(CS0 and CS1) are tested and compared:

• CS0: First, we have empirically determinedR ≈ 3M/4
for all modes. This value gives a good conditioning for
the computation of the pseudo-inverse ofψq, cf. (8), and
some informal tests reveal that it gives good results in
most of the cases.

• CS1: Second, we modified the previous algorithm to
choose the bestR for every modeq separately, using a
cross-validation procedure. A small numberm of micro-
phones are randomly selected among theM microphones
of the array. Then for every value ofR < M −m, the
vector α̃q of (8) is computed using theM − m other
microphone positions. Finally the modal shapeφq are
reconstructed at them selected positions, and the value
of R which gives the lowest error is chosen.

Note that the choice of the numberQ of estimated modes
is not a critical issue. In practice, we can use an approxi-
mate value of the room volumeV and the relationQ ≈
4πV (fc/ c0)

3/3 (cf. [12]). Nevertheless, ifQ > N , stages (a)
and (b) cannot be performed, as only the time information is
exploited in these stages. The next section presents a stronger
sparsity property, which takes into account simultaneously the
information of time and space, but with a restricted assumption
on the room geometry.

IV. PLANE WAVE SPARSITY

In this section, we study the solutions of the wave equation
in the simple case of a rectangular room. From this study,
we exhibit a stronger property of sparsity which justifies the
use of the Compressed Sensing framework (CS). The derived
algorithm, detailed in sec. V, will be namedCS2.

A. Modal analysis in a rectangular room

In the case of a rectangular room with rigid walls, we can
make the variable separation in Cartesian coordinates(x, y, z),
cf. e.g. [12]. Then, each modal shape is written as the product



5

of 3 functions of one variable. With~X = [x, y, z]T , the RIRs
become:

p(t, ~X) =
∑

q∈Z⋆

Aq Fxq(x)Fyq(y)Fzq(z) e
jkq c0 t . (10)

For each modeq, these functions verify the 1D Helmholtz
equation∂2vFv+k

2
vFv = 0 for v ∈ {x, y, z}. With rigid walls,

the kv ’s are real constants such thatk2x + k2y + k2z = k2

(cf. [12]). According to the Helmholtz equation, for each
Cartesian coordinatev the Fv ’s are the sum of 2 solutions:
Fv(v) = A+

v ejkvv +A−
v e−jkvv. Then, expandingFxFyFz,

the modal shapeφq( ~X) is written as the sum of 8 plane waves
e±jkxx±jkyy±jkzz = ej

~k· ~X , with ~k = [±kx,±ky,±kz]T .
In the case of non-rigid walls, as the wavenumberk is com-

plex: k = (ω− jξ)/c0, thekv ’s are complex too. This implies
a slight decrease of theFv ’s near the walls. Nevertheless, for
~X far from the walls, we assume that the imaginary part of
kv is negligible, and thatk2x + k2y + k2z = Re(k)2 = ω2/c0

2.
Note that in the case of a rectangular room, the wavevectors

~k = [±kx,±ky,±kz]
T are at the vertices of an inscribed

parallelepiped of the sphere with radius|ω|/c0. Moreover,
whereas the modal density, which is related to the number
of modes per frequency range, strongly increases with the
frequency, withf2, all the wavevectors are uniformly spaced
in the~k-space (with coordinateskx, ky, kz), cf. [12].

Consequently, in a bandwidth containing2Q complex
modes, the RIRs can be written as the sum of16Q harmonic
plane waves in the case of rectangular rooms. Note that in
the previous section, each modal shape was approximated by
R fixed plane waves sampling uniformly the sphere of radius
|ω|/c0, whereas here, with the assumption of rectangular room,
only 8 plane waves are required by mode. Then, this stronger
sparsity property justifies the use of CS techniques.

This model is, strictly speaking, only valid for rectangular
rooms. In spite of this strong restriction compared to the
weaker assumption of the methods CS0 and CS1 (star-shaped
rooms), this model remains interesting because rectangular
rooms are very often used, and as shall be seen in the
experimental section VI, it gives better results than CS0 or
CS1 in hard conditions (low signal-to-noise, interpolation on
a larger bandwidth).

B. Compressed Sensing framework

The general problem consists in the reconstruction of a
signal y ∈ R

N from M observationsxm, linked by the
linear systemx = Φy. Compressed Sensing(CS) deals with
the underdetermined case, for which there are more unknowns
than equations (N > M), cf. e.g. [13], [14]. As such a
problem cannot be solved without additional hypothesis, the
underlying idea is that ify lives in a subspace of dimensionK
and with basisψ, for K < M, we can solvey = ψa writing
x = Φy = Φψa = θa. However, in general we do not know
ψ.

Then, we defineL vectorsψl, forming the matrixΨ with
L ≫ K, and we look for a basis which explainsy. In other
words, we look for a vectorα ∈ R

L K-sparse (where no
more thanK coefficients are non-zero), such thaty = Ψα.

Unfortunately, the problem of finding the sparsest solutionis
not convex, and hence difficult to solve. However, we can
change it into a convex problem by considering the following
Basis Pursuit Denoisingapproach:

min
α∈RL

‖α‖ℓ1 subject to ‖x− ΦΨα‖ℓ2 ≤ ε, (11)

where the normℓn is given by‖y‖ℓn = (
∑

i |yi|
n)1/n, andε

is a data fidelity parameter. A highε allows a stronger sparsity
of α, and a smallε improves the reconstruction ofy.

Some theoretical results (cf. e.g. [15], [16], [17]) give a
sufficient condition for reconstructingy in the case of sparse
signals, by the so-called Restricted Isometry Property (RIP). It
quantifies howΦ andΨ are mutually incoherent with respect
to their use on sparse signals. In practice, the RIP is difficult
to check, but it is verified with high probability for some
random sampling matrices. In practice, this encourages theuse
of randomly selected observation points, which are here the
microphone positions in the 3D space. Note that, conversely,
a regular sampling grid might lead to a strong correlation with
plane waves, whenever the wavevector gets close to be aligned
to one of thex, y or z axis: such standard sampling scheme
is therefore likely to be suboptimal in the CS framework.

C. Reformulation of the problem in a Compressed Sensing
framework

Now, we can reformulate our problem as follows: let us de-
fine Sx the signal vector of the measurementsp(tn, ~Xm), and
Sy the signal vector that we wish to reconstruct (interpolate)
on a uniform grid of the space:

Sx [(n+1)+(m−1)N ] = p(tn, ~Xm), and (12)

Sy [(n+1)+(s−1)N ] = p(tn, ~Ys), (13)

where the~Xm’s are the positions of theM microphones of the
array, and the~Ys’s are the positions of the 3D grid. Considering
the ideal reconstruction using a finely sampled uniform array
(cf. sec. II),Sx andSy are linked bySx = ΦxySy, whereΦxy

is an interpolation matrix representing the spatial convolution
for interpolating the RIRs at~Xm starting from the signals on
the grid of the~Ys’s.

Since the number of microphones is limited in practice, we
cannot directly reconstructSy from Sx. However, thanks to
the sparsity property of the RIRs as described in sec. IV-A,
it is possible to solve this problem using CS. The rough
idea is to define an oversized dictionaryΨy with harmonic
plane waves which are “virtually” sampled on the grid. Then,
writing Sy = Ψyα, in principle the problem might be solved
with Sx = ΦxyΨyα. Unfortunately because of the space
dimensionality (4D), standardℓ1 optimization algorithms of
(11) would require too much memory and cannot be run on
standard computers. Hence, in the next section, we propose a
greedy algorithm for the interpolation of the RIRs.

V. A LGORITHMIC DETAILS

When ℓ1 optimization procedures cannot be processed be-
cause of computational issues, greedy algorithms such as
Matching Pursuit are common alternative. However, with the
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size of data in this work, even this simple algorithm is too
cumbersome to be computed in practice. In this section, first
standard Matching Pursuit is presented, then we propose a
derived version which can be applied for the sampling of the
RIRs in 3D. This new algorithm is namedCS2 in this paper.

A. Matching Pursuit

Matching Pursuit (MP) [18] consists in iteratively subtract-
ing from the signal the atom that best approximates it. This
atom g is chosen among the columns of a dictionary matrix
Ψ, of size(M×L). Then the process is iterated on the residual
which is, at the iterationi+1:

ri+1 = ri − αi gi, (14)

with r0 the signal to approximate, and where the vectorgi
and the coefficientαi are chosen to minimize‖ri+1‖ℓ2 . If
the column vectors ofΨ are normalized, the optimal atom
is gi = argmaxg∈Ψ |〈g, ri〉| and the optimal coefficient is
given by the correlationαi = 〈gi, ri〉 := gHi ri. The symbol
.H denotes the conjugate transpose of a complex matrix or a
vector.

A similar method consists in searching at each iteration a
group ofP atoms simultaneously minimizing the norm of the
residualri+1 = ri −Gα, whereG is a (M×P ) matrix of P
atoms, andα is a (P×1) vector. If the atoms are normalized,
and if rank(G) = P with P < M, the optimal matrixGi

minimizes

‖ri+1‖
2
ℓ2 = ‖ri‖

2
ℓ2 − rHi G

(
GHG

)−1
GHri, (15)

and the weight vector is thenα = (GHG)−1GHri = G†ri,
where the symbol.† denotes the pseudo-inverse of a matrix.

In the present work, we first consider the application of
Matching Pursuit considering groups ofP harmonic plane
waves which share the same wavenumber. For example, the
rectangular room considered in the experiments, section IV-A,
led to P = 8. Unfortunately, because of the dimensionality
of the problem, it is not possible to use this algorithm as
such. Indeed, among a high number of possible wavenumbers
k = (ω−jξ)/c0 (that belong to a subspace of dimension 2), we
would have to test a wider number of possible combinations
of P plane waves on the sphere of radiusω/c0 (in a subspace
of dimension2P ). Consequently, the matricesG live in a
subspace of dimension2 + 2P , and exhaustive search for
the most correlated group is in practice absolutely impossible.
In the next section, we propose a modified algorithm which
alleviates this problem.

B. Modified MP algorithm

Let us defineS the (N × M) signal matrix such that
S[n,m] = p(tn, ~Xm), and S its vectorized version as in
equation (12),S = Sx. The residual vectors will be noted
Ri, and their(N ×M) matrix versions Ri.

1) Analysis: The principle of the proposed algorithm is
as follows. At every iterationi, first we choose the damped
complex exponential which best approximates theM columns
of Ri (which are time signal vectors), and so a wavenumber
ki = (ωi − jξi)/c0 is estimated. Then, amongW selected
atoms, we choose a group ofP harmonic plane waves (on the
sphere of radiusωi/c0) which efficiently explains the residual
Ri, with P < W . For more details, the 4 stages of the iteration
i are detailed here:

(A) This stage is similar to the search of poles of SOMP [9].
We define the(N×Lt) time dictionary matrixΘ with
Lt columnsθℓ which are damped complex exponentials:
Θ[n,ℓ] = θℓ[n] = eξℓtn ejωℓtn , with 0 < ωℓ ≤ ωc and
ξℓ < 0. Then defining the(Lt×M) correlation matrix
ηi := |Θ̄HRi|, we choose the indexℓi which maximizes
the sum of energies:

∑M
m=1(ηi[ℓ,m])

2. Here, the matrix
Θ̄ corresponds toΘ where the columns are individually
normalized:θ̄ℓ = θℓ/‖θℓ‖ℓ2 .

(B) With the estimated wavenumberkℓi , we define an
(MN×Ls) dictionary matrix∆i with Ls columnsδi,ℓ
which are harmonic plane waves:δi,ℓ [(n+1)+(m−1)N ] =

eξℓi tn ejωℓi
tn ej

~kℓ· ~Xm , with ‖~kℓ‖2 = ωℓi/c0, ∀ℓ ∈ [1, Ls].
Then, withLs ≫W>P , we isolateW atomsδi,ℓ which
are the maxima ofρi[ℓ] := |〈δ̄i,ℓ,Ri〉|. Note thatρi can
be writtenρi = |∆̄H

i Ri|. Actually, because of possible
lobes,ℓ must index a 2D grid of the uniformly sampled
sphere of radiusωℓi/c0, and the chosen atoms are theW
higher local maxima.

(C) Among theseW atoms, we test all combinations of
P atoms (there are

(
W
P

)
possible combinations). Then

we choose the combinationGi which minimizes (15):
‖Ri+1‖

2
ℓ2

= ‖Ri‖
2
ℓ2
−RH

i ḠḠ
†Ri, with G an(MN×P )

matrix of one combination ofP vectors.
(D) Finally, the best combinationGi is subtracted. Actually,

here we have to consider the hermitian symmetry for real
signals, and so definingGi = [Gi, G

∗
i ], the residuali+1

is: Ri+1 = Ri − Ḡiαi, with αi = Ḡ†
iRi,

Compared to the standard Matching Pursuit algorithm pre-
sented in section V-A, this new algorithm has a tremendously
reduced complexity: whereas the dimension of the dictionary
matrix Ψ of standard MP is(MN × LsLt), thanks to the
variable seperation, the modified algorithm uses the matrices
Θ and∆i with reduced dimensions(N×Lt) and(MN×Ls)
respectively. Moreover, in the second stage, the atoms are
individually tested on a sphere (subspace of dimension 2),
which facilitates the process; and only theW best atoms are
selected for the stage (C). In practice,W is chosen such that
the number

(
W
P

)
of possible combinations remains reasonable.

With P = 8, a typical choice isW = 16, which leads to
12,870 combinations. With the standard MP algorithm, the
number of combinations to test isLt

(
Ls

P

)
.

As in sec. III-C, the number of modesQ is estimated
beforhand using an approximate measurement of the room
volume. This numberQ determines the number of iterations.

Note that a slight improvement has been done by adding a
additional stage. Starting from the group ofP plane waves
selected at the end of stage (C), the wavenumber and the
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wavevectors are refined using a non-linear iterative optimiza-
tion, based on a simplex search method [19].

2) Projection and interpolation: At the end of theQ
iterations, we getV =QP estimated harmonic plane waves,
with wavenumberkv and wavevector~kv. They define the
atoms of the(MN×V ) basis matrixBx:

Bx [(n+1)+(m−1)N, v] = ejkvtn ej
~kv· ~Xm , (16)

with ‖~kv‖2 = ωv/c0 > 0,

andkv = (ωv − jξv)/c0 .

Then withAx := [Bx, B
∗
x], considering positive and negative

frequencies, we could solve the optimal solutionS̃x = Axa
in the mean least squares sense witha = A†

xSx, which
would require complex calculus. In order to reduce memory
requirements and makes computation faster, it is preferable
to manipulate only real coefficients. Thena is obtained as
follows:

a[v] = a∗[v+V ] = µ[v] + jµ[v+V ],

with v ∈ [1, V ]

andµ =
1

2

[
Re{Bx},− Im{Bx}

]†
Sx. (17)

If the problem of (17) is ill-conditioned, in practice we
remove some atoms ofBx which are linearly close to some
others. For that, selecting the indexes(v1, v2) of the maximum
of the matrixC−IV , whereIV is the identity andC := B̄H

x B̄x

is the normalized correlation matrix, we remove the plane
wave v ∈ {v1, v2} which minimizesρv = |〈bv,S〉|. This
process is iterated until the problem gets well-conditioned.
Note that the use of an orthogonal projection in stage (D) (as
with the Orthogonal Matching Pursuit [18]algorithm) would
partly solve this issue, but the associated computational cost
would be prohibitive for the problem at hand.

Finally, the interpolation at any position~Y ∈ Ω and any
time t ∈ [0, N/Fs], is done by:

p̃(t, ~Y ) =

2V∑

v=1

a[v] ejkvt ej
~kv·~Y (18)

or S̃y = Aya whereAy corresponds to the matrix basis of
harmonic plane waves at the position~Y . Note that while the
matrices are normalized in section V-B1,Bx andAy are not
normalized in (17) and (18).

C. Improvements for fast computation

Taking advantage of the variable separation (in time and
space), we can significantly reduce the matrix dimensions and
the number of floating-point operations which are respectively
associated to the used memory size and CPU usage. The
following points allow the computation of the algorithm with
a reasonable time and memory size:

• In stage (A), and equivalently in SOMP, if the frequency
axis of ω is uniformly sampled between0 and Fs/2,
instead of handling the matrixΘ and computing the
productΘ̄HRi, we compute the Fast Fourier Transforms
in time of: eξtn Ri[n,m], alternatively for every sampled
damping coefficientsξ.

• For the computation ofρi in stage (B), we prove that

|∆̄H
i Ri| = |θ̄Hℓi Ri Σ̄

∗
i |

T , (19)

whereθℓi is the (N×1) vector chosen in stage (A), and
Σi is an (M ×Ls) space dictionary matrix such that
Σi[m,ℓ] = ej

~kℓ· ~Xm , with ‖~kℓ‖2 = ωℓi/ c0. Whereas the
first member requires at leastNMLs floating-point num-
bers, the second one requires significantly less memory,
N +MLs numbers. Moreover, the time of computation
is significantly reduced because the construction ofθ̄ℓi
and Σ̄i is faster than this one of̄∆i.

• In stage (C), we have to select the group of plane waves
which minimizes‖Ri+1‖2ℓ2 . Proving that

RH
i ḠiḠ

†
iRi = (θ̄Hℓi Ri)

∗Σ̄iΣ̄
†
i (θ̄

H
ℓi Ri)

T , (20)

the number of required floating-point operations is re-
duced with a factorN . Here,Σi is a (M×P ) matrix of
a candidate group ofP plane waves.

• During the reconstruction of the RIRs, instead of using
the formulaSy = Aya, we can accelerate the compu-
tation by reducing the matrix dimensions and we can
simplify the reconstruction in the case ofI interpolation
positions~Yr:

Sy = 2Re
{
Θy diag(b)Σ

T
y

}
, (21)

where b is the first half of a, Θy[n,v] = ejkvtn and

Σy[r,v] = ej
~kv·~Yr , for r ∈ [1, I] andv ∈ [1, V ].

• Finally, for the computation of the correlation matrixC,
we prove that

B̄H
x B̄x = (Θ̄H

x Θ̄x)×̇(Σ̄H
x Σ̄x), (22)

where ×̇ symbolises the array multiply. Whereas the
first member needsVMN floating-point numbers and
V 2MN operations, the second one needs onlyV (M+N)
numbers andV 2(M +N + 1) operations.

VI. EXPERIMENTS AND RESULTS

In the following, we present some results of the three
algorithms presented in this paper. They will be named method
CS0, method CS1 (cf. sec. III-C), and method CS2 (cf. sec.
V-B). The quality of the interpolation is evaluated using the
Signal-to-Noise Ratio (SNR) [dB] and the normalized Pearson
correlation coefficientc [%]. With s the (N×1) vector of the
target RIR, such thats[n] = p(tn, ~X), and s̃ its interpolation:

SNRdB = 20 log10

(
‖s‖ℓ2

‖s− s̃‖ℓ2

)
, (23)

C% = 100
|〈s, s̃〉|

‖s‖ℓ2 ‖s̃‖ℓ2
. (24)

Note that during the first stage of CS0 and CS1, we use the
algorithm SOMP [9] because some preliminary tests revealed
that it gives better results than the other damped sinusoidal
component analysis methods. For the time dictionaryΘ of
SOMP and CS2, we use a grid of the possible wavenumbers
k = (ω − jξ)/ c0. The frequency axis ofω is uniformly
sampled on[0, πFs], and in the experiments of this section,
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Methods M (mic. number) SNR [dB]

uniform sampling
64 12.7

125 19
216 23.8

method CS0
64 15.6
96 25.2

125 29.2

method CS1
64 11.8
96 17

125 22.1

method CS2
64 14.2
96 16.6

125 17.8

TABLE I
NUMERICAL EXPERIMENT: COMPARISON BETWEEN UNIFORM SAMPLING

AND METHODS CS0, CS1AND CS2,ON SYNTHETIC RIRS.

the range of the damping coefficientsξ is uniformly sampled
on the range[0.5 ξ⋆, 2ξ⋆], whereξ⋆ = −3 ln 10/RT60 is the
damping associated to the estimated reverberation time at 60
dB, RT60. Typically, we use 8192 values ofω, 128 values of
ξ, and the number of plane waves used in stage (B) of sec.
V-B1 is Ls = 5000.

This section presents successively some results on numerical
simulations and measured RIRs. The estimatedRT60 of the
measures is approximately 1.25 seconds. For the numerical
simulations, the reflexion coefficients of the wall have been
set in order to get approximately the same reverberation time.

A. Preliminary numerical results

Table I compares the uniform sampling to the proposed me-
thods. Here, we aim at reconstructing the RIRs within a cubeΩ
of side1.7m, starting fromM simulated RIRs (cf. [20], [21])
of a virtual array (regular for the uniform sampling, randomfor
CS0, CS1 and CS2), in a rectangular room of sides (3.8, 8.15,
3.3)m. The source position is~Xs = (3.3, 7.7, 1), and the center
of the array is ~Xa = (1.8, 2.8, 1.6). The simulated RIRs are
filtered by a low-pass filter of cut-off frequencyfc = 300Hz,
cf. [21], the sampling rate isFs = 750Hz, and the SNRs are
averaged over 2744 interpolation positions inΩ.

Concerning the regular array which is cubic, the choosen
spatial sampling stepδ is the same for all directions (Ox, Oy
andOz) and it respects the sampling theorem:δ < c0 /(2fc).
For a given numberM of microphones (64, 125 or 216, cf.
table I), the stepδ and the size of the array have been chosen
as follows: we tested some configurations of regular arrays
corresponding to the first strategy of sec. II-B, to the second
one, or to a compromise of both. The displayed result uses
the configuration which provides the better performance.

We observe that, for a given number of microphones,
method CS0 significantly outperforms uniform sampling (cf.
M = 64 or 125). Equivalently, methods CS0 and CS1 can
obtain equivalent performance as regular sampling, but with
a smaller number of microphones (see for instanceM = 96
for CS0,M = 125 for CS1, andM = 216 for the uniform
sampling). According to these preliminary results, methodCS2
does not seem to be competitive; we will see its benefits at a
later stage.

B. Experimental results

We have then designed a real 3D array with 120 electret
microphones, randomly positioned within a cube of size 2m
(cf. fig. 2). The room has dimensions (3.9, 8.15, 3.35)m, it was
empty but still had features that made it non-ideal: a doorway,
two windows, a cornice, concrete walls, wood panels, etc. The
source is a baffled loudspeaker placed far from the array, at
~Xs = (1.8, 7.5, 1.6), and the center of the array is at~Xa =
(1.9, 3.1, 1.5). Note that with this configuration, the sides of
the array are at 50cm from the floor and 90cm from the closest
wall. The RIRs have been measured using sine sweeps [22]
in the bandwidth [50, 1000]Hz. The sine sweeps were long
enough in order to reduce the noise of measurements. In order
to isolate the modes below a cutoff frequencyfc, we have used
a low-pass filter, and a downsampling atFs > 2fc.

The microphones are placed at random positions within
Ω, with a statistical distribution close to uniform, up to
mechanical constraints. 15 long bars are fixed (cf. fig. 2), and
the microphones are at the ends of small perpendicular rods
which are attached on the bars (8 per bar). The degrees of
freedom are the orientations and the positions of the rods on
the bars. Using synthetic RIRs, we have numerically tested a
number of array configurations, respecting these mechanical
constraints, and we have selected this one who produced
best results. The set of microphone positions has been finely
calibrated using an acoustic optimization procedure [23],with
the measured positions as initial estimates.

In figure 3, three interpolated RIRs are displayed (for the
three methods CS0, CS1 and CS2). One microphone of the
array has been isolated for the test of the interpolation, and
the analysis has been done using the 119 others. Herefc =
300Hz andFs = 750Hz. Figure 4 illustrates one result in the
frequency domain, for method CS1. Both SNR and correlation
performance measures show that the interpolated RIR is close
to the measured one.

C. Parameter analysis

In figure 5, the performances are evaluated according to the
number of microphones for the analysis. For the interpolation
and the evaluation, we have randomly selected 15 microphones
close to the center of the array (distance smaller than 80cm).
The analyses have been computed withM microphones ran-
domly chosen among the remaining positions. As a general
trend, performance decreases withM . However, whereas
method CS2 is almost 5dB below CS0 and CS1 atM = 105
microphones, the three methods are roughly equivalent for
28 ≤ M ≤ 40. We also can remark that CS2 totally fails for
M < 19. This shows that with only 46 microphones, we can
reconstruct the RIRs within the 3D volume with an SNR of
15dB. The crossover between the methods is also interesting:
method CS2 is a simpler model based on stronger assumptions,
it is better when few information is available, on the other hand
methods CS0 and CS1 have more parameters to estimate, and
can therefore better explain the RIRs when a sufficiently large
number of microphones is used.

Figure 6 shows the performance of the interpolation accord-
ing to the distance between the interpolation position and the
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Fig. 2. Pictures of the experimental microphone array. The 120electret microphones are at the ends of the small rods, randomlyplaced and oriented on 15
fixed bars. The microphones are omnidirectional in the used bandwidth.
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Fig. 3. Measured and interpolated RIRs. (a): Method CS0, (b): Method CS1, (c): Method CS2. On measured RIRs.
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Fig. 4. Fourier transform of RIRs for the method CS1 (cf. fig. 3b). The y-axis is in a dB scale. On measured RIRs.

12 16 19 23 28 34 40 46 52 60 70 80 92 105
−5

0

5

10

15

20

25

M (number of microphones for the analysis)

S
ig

na
l−

to
−

N
oi

se
 R

at
io

 [d
B

]

 

 

Method CS0
Method CS1
Method CS2

Fig. 5. Interpolation performance as a function of the number of microphones
of the array. On measured RIRs.

center of the array. Here, each measured RIR is interpolated

using the model parameters from the analysis of the remaining
119 measured signals. We usedfc = 300Hz, andFs = 750Hz.
The microphones are grouped according to their distance
from the center of the array. In each group corresponding
to a distance range, we estimate the average reconstruction
error and the corresponding standard deviation. As expected,
performance decreases when the interpolation position moves
away from the center, although it can be noticed that with
methods CS1 and CS2 they decrease slower than with method
CS0.

Figure 7 shows the performance of the interpolation when
synthetic noiseǫn is added to the measurement signals. The
x-axis is, on a dB scale, the energy of the additional noise
over the energy of the measured signals:‖ǫ‖ℓ2/‖s‖ℓ2 . It can
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Fig. 6. Evaluation according to the distance from the centerof the array.
On measured RIRs.

be observed that, as expected, performances decrease when
the noise level increases. At high noise levels, method CS2
appears more robust than method CS0 and CS1: the least-
square projection of methods CS0 and CS1 tries to fit the
whole (noisy) signal with the model, while the “sparse”
method CS2, with fewer parameters, intrinsically behaves as
a denoising framework.
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Fig. 7. Evaluation according to the level of the additional noise. On measured
RIRs.

An interesting numerical experiment is the comparison of
the methods according to the array configuration. In figure 8,
we have numerically simulated and tested 6 different array
configurations with 125 microphones: 3 random arrays (with
a uniform distribution within the cube with side 2m), the
experimental array (which is approximately random, cf. fig.2),
a spherical array with radius 1.24m (for which the volume is
8m3 as the cube), and a regular array (where the receivers
are uniformly positioned within the cube with side 2m).
The noticeable result is that: as suggested by the RIP for
the Compressed Sensing framework, random arrays give best
results than regular arrays. For example, methods CS0 and CS1
totally fail for the spherical array. Moreover, the observation of
the results of the random arrays (rd1-3 and xp), shows a rather
good reproductibility for any random configuration. Further
research should investigate arrays with higher performance,
with respect to their specific geometry.

As mentioned earlier, when the cutoff frequencyfc in-
creases, the modal density strongly increases, and the sparsity
assumption becomes less and less valid. Indeed, the numberQ
of theoretical modes can be computed (cf. [12]), and table II
shows that it increases faster thanfc. As expected, results for
methods CS0 and CS1 decrease whenfc increases, cf. fig. 9.
Note that stages (a) and (b) of sec. III-C, for CS0 and CS1,
cannot be led if the number of available samplesN is smaller
than the number of estimated modesNs. For this reason,
we need to limit the numberNs for high fc (cf. tab. II for
fc = 375Hz and400Hz). On the contrary, the numberNa of
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Fig. 8. Numerical evaluation of six different microphone arrays: 3 random
arrays (rd1-3), the experimental array (xp), a spherical regular array (sp) and a
cubic regular array (cb). The SNRs of methods CS0 and CS1 for the spherical
array (sp) are out of range, at almost−12 dB (not displayed). On simulated
RIRs.

estimated modes of method CS2 (or equivalently the number
of iterations) is not constrained by the number of available
samples. Even, we can estimate at more frequencies than the
actual number of modes. This is experimentally confirmed on
fig. 9, with a remarkable stability for method CS2. Here, only
computational issues prevent us from testing at higherfc, and
the cutoff frequency above which method CS2 starts to fail
could not be observed here.
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Fig. 9. Results for different cutoff frequencies. On measured RIRs.

fc [Hz] 250 275 300 325 350 375 400

Q 120 167 221 291 368 465 569

Ns 120 167 221 291 368 426 453

Na 144 200 265 349 442 558 683

Fs [Hz] 625 694 744 822 868 947 1008

TABLE II
PARAMETERS OF THE EXPERIMENT OF FIG. 9.

Finally, we have checked the robustness of the three me-
thods with respect to the geometry of the room, in particular
when the measured room gets further away from the “ideal”
empty rectangular room, cf. fig. 10. The acoustics of the room
have been significantly changed by opening the windows and
the door, and by placing a chair and a large wooden panel.
Moreover, the used loudspeaker is directional and we have
tested two different orientations. Experimental results for RIR
interpolation show that the performance of the three methods
was not significantly affected by this change of geometry of
the room, or the orientation of the used loudspeaker.
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Fig. 10. Experimental tests of other room and loudspeaker configurations.
The index (e) meansempty room and (o) means withobstacles, which here
means opening the windows and the door, and placing a chair anda wooden
panel. The second index defines the direction of the loudspeaker: (s) means
south, the baffled loudspeaker is oriented towards the microphones array,
and (nw) meansnorth-west, the baffled loudspeaker is oriented in an other
direction, at 135o from the array. On measured RIRs.

VII. C ONCLUSION

This paper shows that, at low frequencies, the sampling of
the full acoustic wavefield in a room is possible with a number
of microphones significantly lower than would be required by
Shannon-Nyquist sampling theorem. Justified by the modal
theory, we have used the Compressed Sensing framework to
interpolate the Plenacoustic Function in a 3D-space domainof
interestΩ.

The reduction in the number of measurements / micro-
phones allowed by Compressed Sensing can be important in
practical applications. However, it comes with a computational
cost that can rapidly become prohibitive. The three algorithms
presented in this paper have been tuned so that they still can
run in reasonable time: the MATLAB analyses of section VI
spent almost one hour on a workstation with a 6 core CPU at
3GHz and 24Gb of RAM.

As shown in section VI, the two first algorithms (methods
CS0 and CS1) give good results in favorable cases, whereas the
last one (method CS2) seems more robust in noisy conditions,
and operates on a larger bandwidth. Furthermore, a detailed
comparison of methods CS0 and CS1 shows that CS1 is more
robust especially with respect to the distance to the center(cf.
fig. 6). This observation justifies the use of cross-validation
for the selection of the approximation orderR (cf. sec. III-C).

In this work, the RIRs reconstruction is limited to the
lower frequencies of the spectrum: in this limited part of
the spectrum it operates on a time interval that covers the
whole duration of the RIRs. A complementary approach can
similarly interpolate the early part of the RIRs over a wide
frequency range with the same microphone array, using a
sparsity assumption of the early reflexions (cf. [24]).

Here, we consider a fixed source at~Xs and a moving
receiver in a domainΩ. Using the reciprocity properties, we
get the RIRs for a fixed receiver at~Xs, from a moving source
in Ω. Further work should consider both moving source and
receiver.
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APPENDIX

In this section are given some details about the plane wave
approximation of section III-B. Let be

∆u+ k2u = 0,

the Helmholtz equation of solutionu with wavenumberk.
Previous studies [5] have shown that, under some conditions

on the domain of interestΩ, the following approximation (25)
of the solutionu as sums of product of spherical harmonics
Yℓ,m and spherical Bessel functionsjℓ, is well behaved.

u( ~X) ≈
L∑

ℓ=0

ℓ∑

m=−ℓ

bℓ,mYℓ,m(θ, ϕ)jℓ(kρ) (25)

in spherical coordinates(ρ, θ, ϕ). These components can in
turn be approximated by sums of plane waves, giving a plane
wave approximation of solutions to the Helmholtz equation:

u( ~X) ≈
R∑

r=1

ar e
j~kr· ~X (26)

where the wavevectors~kr are on the sphere of radiusk. Note
that this sampling should cover all the sphere, but does not
depend on the particular field to be approximated.

These approximations are valid not only in a ball for the
spherical harmonics case, or in a box for the plane waves case,
but in any domain as long as it is star-convex (it is in particular
valid for all convex domains), and are independent on the
boundary conditions at the border of the domains. Thus the
only condition needed to used approximations (25) and (26) is
the star-convexity of the domain of interestΩ (no assumptions
are needed on the domain of propagation or on the sources).

Consequently, first, this allows theR-order approximation
of the modesφq of equation (6), second, this validates the
observation of the 4D-FT spectrum of the PAF given in section
II-C. Moreover, considering the above remarks, the evanescent
waves can be also approximated by (6) and the observation of
sec. II-C is also valid near the walls and the source.
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Normale Suṕerieure in Paris, where he graduated
in statistical and non-linear physics. In 2000, he
received a PhD in mathematical modeling from the
Universit́e de Provence, Marseille, France. After a
Marie Curie post-doctoral fellowship at the C4DM,
Queen Mary University of London, UK, he worked
as associate professor at UPMC (Paris 6 University)
in the Musical Acoustics Lab. He is now Professor
at Paris Diderot University - Paris 7, with research at
the Langevin Institute for Waves and Images, where

he currently holds a joint position with the Institut Universitaire de France.
Laurent Daudet serves as associate editor for the IEEE TRANSACTIONS ON
AUDIO, SPEECH, AND LANGUAGE PROCESSING, and is author or co-
author of over 120 publications (journal papers or conference proceedings) on
various aspects of acoustics and audio signal processing, in particular using
sparse representations.


