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ABSTRACT

Directly measuring the full set of acoustic impulse responses within a room would require an unreasonably large number
of measurements. Considering that the acoustic wavefield issparse in some dictionaries, Compressed Sensing allows the
recovery of the full wavefield with a reduced set of measurements, but raises challenging computational and memory issues.
Two practical algorithms are presented and compared: one that exploits the structured sparsity of the soundfield, with
projections of the modes onto plane waves sharing the same wavenumber, and one that computes a sparse decomposition
on a dictionary of independent plane waves with time / space variable separation.
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1. INTRODUCTION

TheRoom Impulse Response (RIR) characterizes the sound transmission in a room between a source and a receiver; it is
associated to the reverberation of a room. Assembling all RIRs makes a function which depends on time, on the source
position, on the receiver position and on the room characteristics (geometry and wall properties). In Ref. 1, this function is
named thePlenacoustic Function (PAF). On one hand, in some applications the effect of room reverberation is undesirable
and acoustic echo cancelers are used to estimate the anechoic sound. On the other hand, reverberation plays an important
role in auditory scene synthesis, in virtual reality for example. In both cases, knowing the whole set of RIRs in a given
room could potentially be used to improve their performance. Measuring the PAF is fundamentally a sampling problem:
from a limited number of point measurements, the goal is to reconstruct (i.e. interpolate) the RIR at any position in space.

Standard acquisition of signals relies on a regular sampling of space and time with respect to Shannon-Nyquist theory.
At a given temporal frequency, the space sampling has to be dense enough to avoid aliasing in reconstruction and interpo-
lation1. However, the measurement of a time varying 3-D image requires a too high number of microphones to be realized
as such in practice. Nevertheless, informed by the physicalnature of the measured signal, we can reduce the number of
sampling locations. This number is directly linked to the number of microphones if one wants to acquire the signals simul-
taneously, in a microphone array setting. For example, in Ref. 2 a method based on Dynamic Time Warping is used for
the interpolation of the early part of the RIRs. Another example is given in Ref. 3 that uses an acoustic model of rooms.
This model is based on the modal theory and assumes that all RIRs share the same damped complex sinusoids (associated
to common poles) with different amplitudes (residues). After the estimation of poles, there residues are estimated foreach
source position on a line considering a space dependency as acosine function. Whereas the first method can interpolate
the early part of the RIRs, the second one is adapted to the interpolation of the whole RIRs only in low frequencies.

In this paper we study the sampling and the interpolation of RIRs in low frequencies within a 3-D domainΩ of the
space, using theCompressed Sensing paradigm (CS): this principle allows to reduce the number ofmeasurements if the
signal is sparse (even approximately) in some domain. Here,this sparsity property is based on the modal theory. Although
based on very different principles, the proposed method canbe seen as an extension of Ref. 3, adapted for 3-D domains.

The outline of this paper is as follows. Section 2 recalls thebasics of uniform sampling. In section 3, we exhibit a
sparsity property and we propose two approaches based on CS.In section 4, we give details on algorithm implementations.
Results are presented in section 5, before concluding remarks in section 6.
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2. UNIFORM SAMPLING

The Plenacoustic Function (PAF) gives the acoustic information that is being transferred between any source and receiver.
It can be described as the set of all Room Impulse Responses (RIRs), for all source / receiver positions. Note that, due to
reciprocity properties, sources and receivers play symmetric roles. Then, considering a fixed source (as this corresponds
to our experimental setup), in this section we recall how standard sampling of the PAF can be done, using a uniform 3-D
microphone array, as a function of the position~X = [x, y, z]T of the receiver within a volumeΩ of the space.

The primary design parameter is the temporal bandwidth thatis required for the applications at hand. If the maximum
frequency is fixed atfc [Hz], higher frequencies are removed with an analog low-pass filter and, assuming ideal filters,
the sampling in time is done at a rateFs > 2fc. Depending on this temporal frequency bandwidth, the distance between
microphones (sampling in space) has to be small enough to avoid spatial aliasing. In this section we present the spectrum
of the PAF to define a criterion for the sampling. The PAF will be denoted by the space/time dependent function:p(t, ~X).

2.1 Spectrum and sampling
In Ref. 1, Ajdler studied the spectrum of the PAF on a line parallel to the(Ox) axis. Withω [rad.s−1] the time frequency
andϕx [rad.m−1] the spatial frequency, he observed that the energy of the 2D-FT p̂(ω, ϕx) = TF{p(t, x)} is mainly
concentrated within the triangle bounded by|ϕx| ≤ |ω|/c0, which corresponds to the dispersion relation of propagative
waves. Then, for growingϕx, he demonstrated that̂p decreases faster than an exponential for|ϕx| > |ω|/c0, which
corresponds to evanescent waves. From this, he determines thesampling theorem which describes how to sample in space
for a target Signal-to-Noise Ratio SNR0:

φx =
2π

δx
>

2ωc

c0
+ ε(SNR0, ωc), (1)

whereδx is the spatial sampling step on the line,ωc = 2πfc is the maximal frequency,c0 is the sound velocity, andε
is given if Ref. 1. Under the far field assumption, evanescentwaves are negligible, which leads toε = 0; the sampling
theorem then becomes:δx < πc0/ωc.

In the case of 2-D sampling (in a plane parallel to(Oxy)), under the far field assumption, the 3D-FT of the PAF,
p̂(ω, ϕx, ϕy), has its support in the cone of equationϕ2

x +ϕ2
y ≤ ω2/c20, whereϕx andϕy are the spatial frequencies along

axes(Ox) and (Oy). We have a similar result in the case of a 3-D sampling: the support of the spectrum of the PAF
p̂(ω, ϕx, ϕy, ϕz) is such thatϕ2

x + ϕ2
y + ϕ2

z ≤ ω2/c20.

Finally, in any case, to avoid spatial aliasing we have to choose sampling steps that satisfy the sampling theorem:

δv <
πc0
ωc

, ∀v ∈ {x, y, z} . (2)

2.2 Reconstruction
The sampling of the PAF givesp(tn, ~Xm) for tn = n/Fs and ~Xm on a spatial grid. The reconstruction of the PAF for any
time and position is done using a 4-D interpolation filter, which may be separable in time and space.

In theory, the ideal reconstruction should be performed using convolution with a sinc function which has infinite
support, therefore requiring an infinite number of samplingpoints, in time and space. Because of the exponential time
decay of the RIRs, the responses can be truncated in time, andusing finite length filters provides good approximations.

However, in space this problem persists because a precise interpolation requires an overly large number of microphones.
Actually, in order to reconstruct the PAF within a sub-domain Ω of the room, in practice there are 2 possible strategies:

• by fixing the spatial sampling stepδ according to Shannon-Nyquist requirements, one has to increase the order of
the 3-D interpolation filter (in space) in order to improve the reconstruction. Consequently, the microphone array
must be larger thanΩ, and according the desired quality, the number of microphones may be unrealistic in practice.

• by fixing the size of the array, one can improve the quality by taking a finer grid. Even if the array does not become
bigger, the number of microphones increases, and boundary effects may still be present. As in the previous case, the
number of microphones may be too high in practice.

In section 5, we compute the reconstruction of the PAF in a cube with sides of1.7m, the uniform sampling is then
compared with two new algorithms. The next section presentsthese new algorithms.



3. PLENACOUSTIC AND SPARSITY

In this section, we study the acoustic propagation within anenclosed space, and we show that it exhibits some sparsity
properties. This validate the use of Compressed Sensing (CS) techniques in the following.

3.1 Structured sparsity
Considering linear acoustic propagation away from the sources, the acoustic pressurep(t, ~X) is governed by the Wave
Equationc02 ∆p(t, ~X)− ∂2t p(t, ~X) = 0, where∆ = ∇2 is the laplacian operator and∂t is the time derivative. Assuming
a modal behavior (at low frequencies) for closed rooms with ideally rigid walls, the solution can be decomposed as a
discrete sum of complex harmonic signals with the angular frequenciesωq:

p(t, ~X) =
∑

q∈Z⋆

Aq φq( ~X) gq(t), (3)

wheregq(t) = ejωqt, φq is the modal shape of the modeq andAq is a related complex amplitude. Note that theωq ’s
and theφq ’s depend on the boundary conditions (room geometry and wallproperties), while theAq ’s depend on the initial
conditions. With the wavenumberkq = ωq/c0, we get the Helmholtz equation for every mode:∆φq + k2qφq = 0.

In the Helmholtz equation,φq is the eigenmode of the laplacian operator with eigenvalue−k2q . If the room is star-
shaped, previous studies4,5 have shown that an eigenmode of the laplacian with a negativeeigenvalue can be approximated
by a finite sum of plane waves incoming from various directions, and sharing the same wavenumberk. Then

φq( ~X) ≈
R∑

r=1

aq,r e
j~kq,r

~X (4)

is theR-order approximation ofφq, with ~kq,r the 3-D wavevectorr of the modeq, such that‖~kq,r‖2 = |kq|.

In the case of non rigid walls, the modes are damped in time,kq now has an imaginary part:kq = (ωq − jξq)/c0,
whereξq < 0 is the damping coefficient. Therefore,gq(t) of eq. (3) becomes:gq(t) = ejkq c0 t = eξqt ejωqt. In theory,
these losses modifyφq, nevertheless we assume that the approximation (4) remainsvalid, at least for~X far from the walls.

Consequently, considering a finite frequency range[0, ωc] containingQ real modes, or equivalently2Q complex modes,
and consideringR-order approximations of theφq ’s, the PAFp(t, ~X) can be approximated by a sum of2QR damped
harmonic plane waves,exp(j(kq c0 t+ ~kq,r ~X)), with coefficients linked by the relationαq,r = Aqaq,r.

Now, taking advantage of thisStructured Sparsity, we present an algorithm previously proposed for the near-field
acoustic holography of plates6. First, using an array ofM microphones placed at the~Xm sampling points withinΩ (with
uniform or random sampling, cf. sec. 3.2.2), we acquire the digital signalsp(tn, ~Xm), of lengthN samples each. Second,
we can reconstruct the PAF using the following algorithm:

(a) The shared wavenumberskq are estimated using a joint estimation of damped sinusoidalcomponents (using for
example the algorithms MUSIC7, ESPRIT8, or SOMP9). Note that this stage corresponds to a sparse decomposition
of theM signals using a joint sparsity model with damped sinusoids.

(b) The matrixP of signalsp(tn, ~Xm) can be written asP = ΦG, whereΦ is the matrix of modes,Φ[m,q] = Aqφq( ~Xm),
andG is the dictionary of damped exponentials,G[q,n] = ejkq c0 tn ; see equation (3). ThenΦ is estimated using the
ℓ2 optimization:Φ̃ = PGH(GGH)−1.

(c) From (4),φq ≈ ψqαq whereψq is the matrix of the plane waves,ψq [m,r] = ej
~kq,r

~Xm , sharing the same wavenumber.

The~kq,r ’s are chosen using a uniform sampling of the sphere10,11 of radius|ωq|/c0. Then, the coefficientsαq,r are
estimated using the projection of everyφ̃q into the corresponding basis ofψq as follows:α̃q = (ψH

q ψq)
−1ψH

q φ̃q.

(d) Finally, the PAF can be interpolated for anyt ∈ [0, N/Fs] and at any position~X ∈ Ω using the approximation:

p̃(t, ~X) =
∑

q α̃q,r ej(kq c0 t+~kq,r
~X).

Note thatP is a real matrix, hence the coefficients of the complex modes have to obey the hermitian symmetry. This
implies: αq,r = α∗

−q,r, kq = −k∗−q and~kq,r = −~k−q,r, where the symbol.∗ denotes the conjugate. Actually, this
hermitian symmetry is used in stages (b) and (c) in order to reduce the size of matrices.



The numberQ of modes is chosen according to a modal analysis of the room12. It increases with the bandwidth, and if
Q > N stages (a) and (b) cannot be led. The reason is that only the time information is exploited in these stages. The next
section presents a stronger sparsity property, which takesinto account simultaneously the information of time and space.

3.2 Plane wave sparsity

In this section, we study the solutions of the wave equation in the simple case of a rectangular room. From this study, we
exhibit a stronger property of sparsity which justifies the use of the Compressed Sensing framework (CS).

3.2.1 Modal analysis in a rectangular room

In the case of a rectangular room with rigid walls, we can makethe variable separation12 in cartesian coordinates(x, y, z).
Then, each modal shape is written as the product of 3 functions of one variable. With~X = [x, y, z]T , the PAF becomes:

p(t, ~X) =
∑

q∈Z⋆

Aq Fxq(x)Fyq(y)Fzq(z) e
jkq c0 t . (5)

For each modeq, these functions verify the 1-D Helmholtz equation∂2vFv + k2vFv = 0 for v ∈ {x, y, z}. With rigid
walls, thekv ’s are real constants such thatk2x + k2y + k2z = k2 (cf. Ref. 12). According to the Helmholtz equation, for each
cartesian coordinatev theFv ’s are the sum of 2 solutions:Fv(v) = A+

v ejkvv +A−
v e−jkvv. Then, expandingFxFyFz, the

modal shapeφq( ~X) is written as the sum of 8 plane wavese±jkxx±jkyy±jkzz = ej
~k ~X , with ~k = [±kx,±ky,±kz]T .

In the case of non rigid walls, as the wavenumberk is complex:k = (ω − jξ)/c0, thekv ’s are complex too. This
implies a slight decrease of theFv ’s near the walls. Nevertheless, for~X far from the walls, we assume that the imaginary
part ofkv is negligible, and thatk2x + k2y + k2z = Re(k)

2 = ω2/c0
2.

Note that in the case of a rectangular room, the wavevectors~k = [±kx,±ky,±kz]T are at the vertices of an inscribed
parallelepiped of the sphere with radius|ω|/c0. Moreover, whereas the modal density∗ strongly increases with the fre-
quency, all the wavevectors are uniformly spaced12 in the~k-space (with coordinateskx, ky, kz).

Consequently, in a bandwidth containing2Q complex modes, the PAF can be written as the sum of16Q harmonic
plane waves in the case of rectangular rooms. Note that in theprevious section, each modal shape was approximated byR
fixed plane waves sampling uniformly the sphere of radius|ω|/c0, whereas here, with the assumption of rectangular room,
only 8 plane waves are required by mode. Then, this stronger sparsity property justifies the use of CS techniques.

Although this model doesn’t hold for arbitrary geometries (cylindrical rooms for example), it can nevertheless be
extended to non rectangular rooms. Indeed, if all walls are plane, we can assume that the modal shapes are still sparse on a
dictionary of plane waves. The corresponding wavevectors are not necessarily at the vertices of a parallelepiped, but they
are always on the sphere.

3.2.2 Compressed Sensing framework

The general problem consists in the reconstruction of a signal y ∈ R
N from M observationsxm, linked by the linear

systemx = Φy. Compressed Sensing (CS) deals with the underdetermined case, for which there are more unknowns than
equations (N > M), cf. e.g. Refs. 13, 14. As such a problem cannot be solved without additional hypothesis, the
underlying idea is that ify lives in a subspace of dimensionK and with basisψ, for K <M, we can solvey = ψa writing
x = Φy = Φψa = θa. However, in general we do not knowψ.

Then, we defineL vectorsψl, forming the matrixΨ with L ≫ K, and we look for a basis which explainsy. In other
words, we look for a vectorα ∈ R

L K-sparse (where no more thanK coefficients are non-zero), such thaty = Ψα.
Unfortunately this problem is not convex and difficult to solve. However, we can change it into a convex problem by
considering the followingBasis Pursuit Denoising approach:

min
α∈RL

‖α‖ℓ1 subject to ‖x− ΦΨα‖ℓ2 ≤ ε, (6)

where the normℓn is given by‖y‖ℓn = (
∑

i |yi|
n)1/n, andε is a fidelity parameter. A highε allows a stronger sparsity of

α, and a smallε improves the reconstruction ofy.
∗The modal density is related to the number of modes per frequency range.



Some theoretical results (cf. e.g. Refs. 15–17) give a sufficient condition for reconstructingy in the case of sparse
signals, by the so-called Restricted Isometry Property (RIP). It quantifies howΦ andΨ are mutually incoherent with respect
to their use on sparse signals. In practice, the RIP is difficult to compute, but it is verified with high probability for some
random sampling matrices. This encourages the use of randomly selected observation points in practice, which are here
the microphone positions in the 3-D space. Note that, conversely, a regular sampling grid might lead to a strong correlation
with plane waves, whenever the wavenumber gets close to be aligned to one of thex, y or z axis : such standard sampling
scheme is therefore likely to be suboptimal in the CS framework.

3.2.3 Reformulation of the problem in a Compressed Sensing framework

Now, we can reformulate our problem as follows: let us defineSx the signal vector of the measurementsp(tn, ~Xm), and
Sy the signal vector that we wish to reconstruct (interpolate)on a uniform grid of the space:

Sx [(n+1)+(m−1)N ] = p(tn, ~Xm), and Sy [(n+1)+(s−1)N ] = p(tn, ~Ys), (7)

where the~Xm’s are the positions of theM microphones of the array, and the~Ys’s are the positions of the 3-D grid.
Considering the ideal reconstruction using a uniform array(cf. sec. 2),Sx andSy are linked bySx = ΦxySy, whereΦxy

is an interpolation matrix representing the spatial convolution for interpolating the PAF at~Xm starting from the signals on
the grid of the~Ys’s.

Since the number of microphones is limited in practice, we cannot directly reconstructSy from Sx. However, thanks
to the sparsity property of the PAF as described in sec. 3.2.1, it is possible to solve this problem using CS. The rough
idea is to define an oversized dictionaryΨy with harmonic plane waves which are “virtually” sampled on the grid. Then,
writing Sy = Ψyα, in principle the problem might be solved withSx = ΦxyΨyα. Unfortunately because of the space
dimensionality (4-D), standardℓ1 optimization algorithms of (6) would require too much memory and cannot be run on
standard computers. Hence in the next section we propose a greedy algorithm for the interpolation of the PAF.

4. ALGORITHMIC DETAILS

Whenℓ1 optimization procedures cannot be processed because of computational issues, greedy algorithms such as Match-
ing Pursuit are commonly used. However, with the size of datain this work, even this algorithm is too cumbersome to be
computed in practice. In this section, first standard Matching Pursuit is presented, then we propose a derived version which
can be applied for the sampling of the PAF in 3-D.

4.1 Matching Pursuit
Matching Pursuit18 consists in iteratively subtracting from the signal the atom that best approximates it. This atomg is
chosen among the columns of a dictionary matrixΨ, of size(M×L). Then the process is iterated on the residual which is,
at the iterationi+1:

ri+1 = ri − αi gi, (8)

with r1 the signal to approximate, and where the vectorgi and the coefficientαi are chosen to minimize‖ri+1‖ℓ2 . If the
column vectors ofΨ are normalized, the optimal atom isgi = argmaxg∈Ψ |〈g, ri〉| and the optimal coefficient is given by
the correlationαi = 〈gi, ri〉 := gHi ri. The symbol.H denotes the conjugate transpose of a complex matrix or a vector.

A similar method consists in searching at each iteration a group ofP atoms simultaneously minimizing the norm of the
residualri+1 = ri −Gα, whereG is a(M×P ) matrix ofP atoms, andα is a(P×1) vector. If the atoms are normalized,
and if rank(G) = P with P <M, the optimal matrixGi minimizes

‖ri+1‖
2
ℓ2 = ‖ri‖

2
ℓ2 − rHi G

(
GHG

)−1
GHri, (9)

and the weight vector is thenα = (GHG)−1GHri = G†ri, where the symbol.† denotes the pseudo-inverse of a matrix.

In the present work, we first considered the application of Matching Pursuit considering groups ofP harmonic plane
waves which share the same wavenumber. For example, the rectangular room considered in section 3.2.1 led toP = 8.
Unfortunately, because of the dimensionality of the problem, it is not possible to use this algorithm as such. Indeed, among
a high number of possible wavenumbersk = (ω − jξ)/c0 (that belong to a subspace of dimension 2), we would have to
test a wider number of possible combinations ofP plane waves on the sphere of radiusω/c0 (in a subspace of dimension
2P ). Consequently, the matricesG live in a subspace of dimension2 + 2P , and exhaustive search for the most correlated
vector is in practice impossible. In the next section, we propose a modified algorithm which alleviates this problem.



4.2 Modified algorithm

Let us defineS the(N×M) signal matrix such thatS[n,m] = p(tn, ~Xm), andS its vectorized version as in equation (7),
S = Sx. The residual vectors will be notedRi, and their(N×M) matrix versionsRi.

4.2.1 Analysis

The principle of the proposed algorithm is as follows: at every iterationi, first we choose the damped complex exponential
which best approximates theM columns ofRi (time signal vectors), and so a wavenumberki = (ωi−jξi)/c0 is estimated.
Then we choose a group ofP harmonic plane waves (on the sphere of radiusωi/c0) which efficiently explains the residual
Ri. For more details, the 4 stages of the iterationi are detailed here:

(A) This stage is similar to the search of poles of SOMP9. We define the(N×Lt) time dictionary matrixΘ with Lt

columnsθℓ which are damped complex exponentials:Θ[n,ℓ] = θℓ[n] = eξℓtn ejωℓtn , with ωℓ ∈ [0, ωc] andξℓ < 0.
Then defining the(Lt×M) correlation matrixηi := |Θ̄HRi|, we choose the indexℓi which maximizes the sum of
energies:

∑
m(ηi[ℓ,m])

2. Here,Θ̄ corresponds toΘ where the columns are individually normalized:θ̄ℓ = θℓ/‖θℓ‖ℓ2 .

(B) With the estimated wavenumberkℓi , we define an(MN×Ls) dictionary matrix∆i with Ls columnsδi,ℓ which

are harmonic plane waves:δi,ℓ [(n+1)+(m−1)N ] = eξℓi tn ejωℓi
tn ej

~kℓ
~Xm , with ‖~kℓ‖2 = ωℓi/c0, ∀ℓ ∈ [1, Ls]. Then,

with W > P , we isolateW atomsδi,ℓ which are the maxima ofρi[ℓ] := |〈δ̄i,ℓ,Ri〉|. Note thatρi can be written
ρi = |∆̄H

i Ri|. Actually, because of possible lobes,ℓ must index a 2-D grid of the sphere of radiusωℓi/c0, and the
chosen atoms are theW higher local maxima.

(C) Among theseW atoms, we test all combinations ofP atoms (there are
(
W
P

)
possible combinations). Then we choose

the combinationGi which minimizes (9):‖Ri+1‖2ℓ2 = ‖Ri‖2ℓ2 −RH
i ḠḠ

†Ri. with G an(MN×P ) matrix of one
combination ofP vectors.

(D) Finally, the best combinationGi is subtracted. Actually, here we have to consider the hermitian symmetry for real
signals, and so definingGi = [Gi, G

∗
i ], the residuali+1 is: Ri+1 = Ri − Ḡiαi, with αi = Ḡ†

iRi,

Compared to the standard Matching Pursuit algorithm presented in section 4.1, this new algorithm requires less time:
in the first stage, no space information is used, andΘ is a relatively small matrix(N×Lt), independent fromi. Moreover,
if the frequency grid of theωℓ’s is uniform between0 andFs/2, using the Fast Fourier Transform makes the computation
of ηi faster. Then in the second stage, the atoms are individuallytested on a sphere (subspace of dimension 2), which
facilitates the process; and only theW best atoms are selected for the stage (C). IfW is properly chosen, the number

(
W
P

)

of possible combinations remains reasonable.

Moreover, in stages (B), (C) and (D), taking advantage of thevariable separation, we can significantly reduce the sizes
of the matrices. For example in stage (B),∆i is an(MN×Ls) matrix, whileρi can be computed byρi = |θ̄Hℓi Ri Φ̄

∗
i |,

whereθℓi is the(N×1) vector chosen in stage (A),θℓi[n] = eξℓi tn ejωℓi
tn , andΦi is an(M×Ls) space dictionary matrix

such that:Φi[m,ℓ] = ej
~kℓ

~Xm , with ‖~kℓ‖2 = ωℓi/c0.

Knowing the number of theoretical modesQ, which depends of the room geometry (cf. e.g. Ref. 12), as in principle
every group ofP plane waves corresponds to a mode, in this work we choose the number of iterations equal toQ.

4.2.2 Projection and interpolation

At the end of theQ iterations, we getV =QP estimated harmonic plane waves, with wavenumberkv and wavevector~kv.
They define the atoms of the(MN×V ) basis matrixBx:

Bx [(n+1)+(m−1)N, v] = ejkvtn ej
~kv

~Xm , with ‖~kv‖2 = ωv/c0 > 0, andkv = (ωv − jξv)/c0 . (10)

Then withAx := [Bx, B
∗
x], considering positive and negative frequencies, we could solve the optimal solutioñSx = Axa

in the least mean square sense witha = A†
xSx, which would require complex calculus. In order to reduce memory

requirements and makes computation faster, it is preferable to manipulate only real coefficients. Thena is obtained as
follows:

a[v] = a∗[v+V ] = µ[v] + jµ[v+V ], with v ∈ [1, V ] andµ =
1

2

[
Re{Bx},−Im{Bx}

]†
Sx. (11)



If the problem of (11) is ill-conditioned, in practice we remove some atoms ofBx which are linearly close to some
others. Note that the use of an orthogonal projection in stage (D) (as with theOrthogonal Matching Pursuit18 algorithm)
would partly solve this issue, but the associated computational cost would be prohibitive for the problem at hand.

Finally, the interpolation at any position~Y ∈ Ω and any timet ∈ [0, N/Fs], is done by:

p̃(t, ~Y ) =

V∑

v=1

a[v] e
jkvt ej

~kv
~Y , (12)

or S̃y = Aya whereAy corresponds to the matrix basis of harmonic plane waves at the position~Y . Note that while the
matrices are normalized in section 4.2.1, in (11) and (12),Bx andAy are not normalized.

5. EXPERIMENTS AND RESULTS

In the following, we present some results of the two algorithms of sections 3.1 and 4.2. They will be named methodCS1 and
methodCS2 respectively. Note that here, the first stage of CS1 uses SOMP9. The interpolation is evaluated using the Signal-
to-Noise Ratio (SNR) [dB] and the Pearson correlation coefficientc [%]. With s the(N×1) vector of the target RIR, such
thats[n] = p(tn, ~X), ands̃ its interpolation: SNRdB = 20 log (‖s‖ℓ2 / ‖s− s̃‖ℓ2) andc = 100 |〈s, s̃〉| / (‖s‖ℓ2 . ‖s̃‖ℓ2) .

Table 1 compares the uniform sampling to the methods CS1 and CS2. Here, we aim at reconstructing the RIRs within
a cubeΩ of side1.7m, starting fromM simulated RIRs19,20 of a virtual array (regular for the uniform sampling, random
for CS1 and CS2). The cutoff frequency isfc = 250Hz, the sampling rate isFs = 750Hz, and the SNRs are averaged over
2744 interpolation positions inΩ. Note that the regular array respects the Shannon theorem inany case:δx < 2 c0 /fc. We
observe that, for a given number of microphones, method CS1 significantly outperforms uniform sampling (cf.M = 64
or 125). Equivalently, method CS1 can obtain equivalent performance as regular sampling, but with a smaller number of
microphones (see for instanceM =64 for CS1 andM =216 for the uniform sampling). According to these preliminary
results, method CS2 does not seem to be competitive; we will see its benefits at a later stage.

Methods uniform sampling method CS1 method CS2
M (number of microphones) 64 125 216 64 96 125 64 96 125
SNR [dB] 15.9 21.7 25.0 24.2 29.6 30.6 13.6 14.8 15.4

Table 1. Comparison between the uniform sampling and methods CS1 and CS2.

We have then designed a real 3-D array with 120 electret microphones, randomly positioned within a cube of size 2m.
The room has dimensions (3.8, 8.15, 3.6)m, it was emptied butstill had features that made it non-ideal: a doorway, two
windows, a cornice, concrete walls, wood panels, etc. The source is a baffled loudspeaker placed far from the array, and
the RIRs have been measured using sine sweeps21 in the bandwidth [50, 1000]Hz. The sine sweeps were long enough
in order to reduce the noise of measurements. In order to isolate the modes below a cutoff frequencyfc, we have used
a low-pass filter, and a downsampling atFs > 2fc. The microphones are placed at random positions withinΩ, with a
statistical distribution close to uniform - up to mechanical constraints. The set of microphone positions has been calibrated
using a optimization procedure22, with the measured positions as initial estimates.

As mentioned earlier, when the cutoff frequencyfc increases, the modal density strongly increases, and the sparsity
assumption becomes less and less valid. Indeed, the number of theoretical modes has been calculated12, and table 2 shows
that it increases faster thanfc. However, the experimental reconstruction SNR remains surprisingly stable with respect to
fc. Note that the analysis for more than 363 modes requires too much memory for our computer, and therefore we could
not test forfc > 350Hz.

fc [Hz] 250 275 300 325 350
Number of modes 120 160 216 280 363
SNR [dB]: method CS1 17.8 19.0 20.1 20.6 20.3
SNR [dB]: method CS2 15.9 16.0 16.3 16.1 15.8

Table 2. Results for different cutoff frequencies.



In figure 1, two interpolated RIRs are displayed (for the two methods CS1 and CS2). One microphone of the array has
been isolated for the interpolation, and the analysis has been done using the 119 others. Herefc = 300Hz andFs = 750Hz.
Results shown that the interpolations are similar to the measured RIRs, both from the SNR and correlation performance
measures.
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Figure 1. Measured and interpolated RIRs. (a): Method CS1, (b): Method CS2.

Figure 2a shows the performance of the interpolation according to the distance between the interpolation position and
the center of the array. Here, each measured RIR has been interpolated using the model parameters from the analysis of
the remaining 119 measured signals. We usedfc = 300Hz, andFs = 750Hz. The microphones are grouped according
to their distance from the center of the array. In each group corresponding to a distance range, we estimate the average
reconstruction error and the corresponding standard deviation. As expected, performance decreases when the interpolation
position moves away from the center, although it can be noticed that with method CS2 they decrease slower than with
method CS1.

Figure 2b shows the performance of the interpolation when synthetic noiseǫn is added to the measurement signals. It
can be observed that, as expected, performances decrease when the noise level increases. At high noise levels, method CS2
appears more robust than method CS1: the least-square projection of method CS1 tries to fit the whole (noisy) signal with
the model, while the “sparse” method CS2 is intrinsically a denoising framework.
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Figure 2. (a): Evaluation according to the distance from the center of the array. (b): Evaluation according to the level of the additional
noise. The x-axis is, on a dB scale, the energy of the additional noise:‖ǫ‖ℓ2/‖s‖ℓ2 over the energy of the measured signals. These
statistical representations show the average of the SNRs and the standarddeviation.

We have checked the robustness of both methods to the geometry of the room, in particular when the measured room
gets further away from the “ideal” rectangular room. This has been made by opening the windows and the door, and by
placing a chair and a wood panel. Experimental results for RIR interpolation show that the performance of both methods
was not significantly affected by this change of geometry.



In figure 3, the performances are evaluated according to the number of microphones for the analysis. Here, we have
randomly selected 16 microphones close to the center of the array (distance smaller than 80cm). As a general trend,
performance decreases withM . It is however interesting to notice that with less than 40 microphones, method CS2
outperforms method CS1, and with only 32 microphones the SNRs average is approximately 10dB.
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Figure 3. Evaluation according to the number of microphones of the array.

6. CONCLUSION

Using the modal theory, it is possible to use Compressed Sensing in order to sample and to reconstruct the Plenacoustic
Function at low frequencies, with a number of sensors significantly lower than would be required by Shannon-Nyquist
sampling theorem. More precisely, we have shown that our method results in a tradeoff between the number of microphones
and the precision of the interpolation. Moreover, our method allows for a flexible array configuration : we experimented
here with microphones randomly placed in the space volume ofinterestΩ, with a spatial distribution close to uniform
probability. Other antenna geometries could be tested, possibly resulting in better performance.

The reduction in the number of measurements / microphones allowed by Compressed Sensing can be important in prac-
tical applications. However, it comes with a computationalcost that can rapidly become prohibitive. The two algorithms
presented in this paper have been tuned so that they still canrun in reasonable time on a PC: the MATLAB analyses of
section 5 spent almost one hour with a 6 core CPU at 3GHz and a 24Gb of RAM.

As shown is section 5, the first algorithm (method CS1) gives excellent results in favorable cases, whereas the second
one (method CS2) seems more robust to noise and the distance from the center of the array.

Here, the PAF reconstruction is limited to the lower frequencies of the spectrum, but on a wide time interval. A
complementary approach can similarly interpolate the early part of the RIRs over a wide frequency range with a reduced
set of measurements, using the sparsity of the early reflexions (cf. Ref. 23). By fusing both approaches, we hope to
extrapolate the full RIRs in time and frequency.
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