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ABSTRACT

Directly measuring the full set of acoustic impulse resgsnsithin a room would require an unreasonably large number
of measurements. Considering that the acoustic wavefiadasse in some dictionaries, Compressed Sensing allows the
recovery of the full wavefield with a reduced set of measur@méut raises challenging computational and memory sssue
Two practical algorithms are presented and compared: aateettploits the structured sparsity of the soundfield, with
projections of the modes onto plane waves sharing the sawenwmber, and one that computes a sparse decomposition
on a dictionary of independent plane waves with time / spaceble separation.
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1. INTRODUCTION

The Room Impulse Response (RIR) characterizes the sound transmission in a room behaesurce and a receiver; it is
associated to the reverberation of a room. Assembling &ksRhakes a function which depends on time, on the source
position, on the receiver position and on the room charisties (geometry and wall properties). In Ref. 1, this fumcis
named thePlenacoustic Function (PAF). On one hand, in some applications the effect of roararteeration is undesirable
and acoustic echo cancelers are used to estimate the ansoloid. On the other hand, reverberation plays an important
role in auditory scene synthesis, in virtual reality for exde. In both cases, knowing the whole set of RIRs in a given
room could potentially be used to improve their performarndeasuring the PAF is fundamentally a sampling problem:
from a limited number of point measurements, the goal is¢omstruct (i.e. interpolate) the RIR at any position in gpac

Standard acquisition of signals relies on a regular sammfrspace and time with respect to Shannon-Nyquist theory.
At a given temporal frequency, the space sampling has to h&edenough to avoid aliasing in reconstruction and interpo-
lation'. However, the measurement of a time varying 3-D image reguirtoo high number of microphones to be realized
as such in practice. Nevertheless, informed by the physigaire of the measured signal, we can reduce the number of
sampling locations. This number is directly linked to thentner of microphones if one wants to acquire the signals simul
taneously, in a microphone array setting. For example, iin R& method based on Dynamic Time Warping is used for
the interpolation of the early part of the RIRs. Another epéams given in Ref. 3 that uses an acoustic model of rooms.
This model is based on the modal theory and assumes thatRdl $lare the same damped complex sinusoids (associated
to common poles) with different amplitudes (residues)eAthe estimation of poles, there residues are estimateshftr
source position on a line considering a space dependencyg@siree function. Whereas the first method can interpolate
the early part of the RIRs, the second one is adapted to tepwiation of the whole RIRs only in low frequencies.

In this paper we study the sampling and the interpolationI&sRn low frequencies within a 3-D domain of the
space, using th€ompressed Sensing paradigm (CS): this principle allows to reduce the numbemefsurements if the
signal is sparse (even approximately) in some domain. Heigesparsity property is based on the modal theory. Althoug
based on very different principles, the proposed methodesseen as an extension of Ref. 3, adapted for 3-D domains.

The outline of this paper is as follows. Section 2 recallshibsics of uniform sampling. In section 3, we exhibit a
sparsity property and we propose two approaches based dn €&:tion 4, we give details on algorithm implementations.
Results are presented in section 5, before concluding kenrasection 6.
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2. UNIFORM SAMPLING

The Plenacoustic Function (PAF) gives the acoustic inféionahat is being transferred between any source and receiv
It can be described as the set of all Room Impulse RespongRs)(Ror all source / receiver positions. Note that, due to
reciprocity properties, sources and receivers play symeneties. Then, considering a fixed source (as this cormesdpo
to our experimental setup), in this section we recall howdaad sampling of the PAF can be done, using a uniform 3-D
microphone array, as a function of the positiﬁrh [z,y, z]" of the receiver within a volumg of the space.

The primary design parameter is the temporal bandwidthishraiquired for the applications at hand. If the maximum
frequency is fixed aff. [Hz], higher frequencies are removed with an analog lowsgdier and, assuming ideal filters,
the sampling in time is done at a raltg¢ > 2f.. Depending on this temporal frequency bandwidth, the digtdetween
microphones (sampling in space) has to be small enough td apatial aliasing. In this section we present the spectrum
of the PAF to define a criterion for the sampling. The PAF wildenoted by the space/time dependent funcpi»(m'X).

2.1 Spectrum and sampling

In Ref. 1, Ajdler studied the spectrum of the PAF on a line pairéo the (Ox) axis. Withw [rad.s!] the time frequency
and ¢, [rad.m!] the spatial frequency, he observed that the energy of th& PR (w, ¢,) = TF{p(t,z)} is mainly
concentrated within the triangle bounded |y,| < |w|/co, which corresponds to the dispersion relation of propagati
waves. Then, for growing,, he demonstrated thgt decreases faster than an exponential|far] > |w|/co, Which
corresponds to evanescent waves. From this, he deterrhimsantpling theorem which describes how to sample in space
for a target Signal-to-Noise Ratio SR
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whered,, is the spatial sampling step on the ling, = 2« f. is the maximal frequency;, is the sound velocity, and
is given if Ref. 1. Under the far field assumption, evaneseeves are negligible, which leads o= 0; the sampling
theorem then becomes; < mcq/we.

In the case of 2-D sampling (in a plane parallel(t@zy)), under the far field assumption, the 3D-FT of the PAF,
P(w, ¢z, py), has its support in the cone of equatioh+ L,DZ < w?/c3, wherep, andyp, are the spatial frequencies along
axes(Ox) and (Oy). We have a similar result in the case of a 3-D sampling: the@eumf the spectrum of the PAF
P(w, Pz, @y, @=) is such thatp? + o7 + 2 < w?/cf.

o

+ £(SNRy, w..), (1)

Finally, in any case, to avoid spatial aliasing we have tooskesampling steps that satisfy the sampling theorem:
5, < ”w—c‘) Vo e {z,y,2}. @)
2.2 Reconstruction

The sampling of the PAF givegt,,, )?m) fort,, = n/Fj and)fm on a spatial grid. The reconstruction of the PAF for any
time and position is done using a 4-D interpolation filterjetbhmay be separable in time and space.

In theory, the ideal reconstruction should be performeagisionvolution with a sinc function which has infinite
support, therefore requiring an infinite number of sampfioints, in time and space. Because of the exponential time
decay of the RIRs, the responses can be truncated in timeysamgl finite length filters provides good approximations.

However, in space this problem persists because a pretéspatation requires an overly large number of microphones
Actually, in order to reconstruct the PAF within a sub-domi@iof the room, in practice there are 2 possible strategies:

e by fixing the spatial sampling stepaccording to Shannon-Nyquist requirements, one has teaserthe order of
the 3-D interpolation filter (in space) in order to improve treconstruction. Consequently, the microphone array
must be larger thaf?, and according the desired quality, the number of micropeanay be unrealistic in practice.

e by fixing the size of the array, one can improve the qualitydirtg a finer grid. Even if the array does not become
bigger, the number of microphones increases, and bounéfagtemay still be present. As in the previous case, the
number of microphones may be too high in practice.

In section 5, we compute the reconstruction of the PAF in @&awuith sides ofl.7m, the uniform sampling is then
compared with two new algorithms. The next section pregdetse new algorithms.



3. PLENACOUSTIC AND SPARSITY

In this section, we study the acoustic propagation withireaclosed space, and we show that it exhibits some sparsity
properties. This validate the use of Compressed SensingtéClsniques in the following.

3.1 Structured sparsity

Considering linear acoustic propagation away from the casjrthe acoustic pressqma,)_(') is governed by the Wave
Equationcy? Ap(t, X’) — 92p(t, X) = 0, whereA = V? is the laplacian operator ardd is the time derivative. Assuming

a modal behavior (at low frequencies) for closed rooms wdémlly rigid walls, the solution can be decomposed as a
discrete sum of complex harmonic signals with the anguigquencies,:

p(t,)z) = Z Aq ¢q()_(') 9q(1), 3)

qeEL*

whereg, (t) = e/¥it, ¢, is the modal shape of the mogeand 4, is a related complex amplitude. Note that thes
and thep,’s depend on the boundary conditions (room geometry andpwafierties), while thel,’s depend on the initial
conditions. With the wavenumbéy, = w, /co, we get the Helmholtz equation for every modep, + k2¢, = 0.

In the Helmholtz equationy, is the eigenmode of the laplacian operator with eigenvalkg. If the room is star-
shaped, previous studieshave shown that an eigenmode of the laplacian with a negaitiesvalue can be approximated
by a finite sum of plane waves incoming from various diredj@nd sharing the same wavenumbefhen

R
d)q (X) ~ Z Qg r eIharX 4)
r=1

is the R-order approximation op,, with I_c'q,r the 3-D wavevector of the modey, such thaﬂlgw\\z = |kql.

In the case of non rigid walls, the modes are damped in tipeiow has an imaginary park, = (w, — 7&;)/co,
where¢, < 0 is the damping coefficient. Thereforg,(t) of eq. (3) becomesy, (t) = ef*acot = efat eJwat, In theory,
these losses modify,, nevertheless we assume that the approximation (4) remalias at least forX far from the walls.

Consequently, considering a finite frequency raiige.] containing real modes, or equivalent}() complex modes,
and considering?-order approximations of the,’s, the PAFp(t, )?) can be approximated by a sum 2H R damped
harmonic plane wavesxp (i (k, co t + k4., X)), with coefficients linked by the relatiom, , = A,a,.,-

Now, taking advantage of thiStructured Sparsity, we present an algorithm previously proposed for the netd-fi
acoustic holography of plat&sFirst, using an array af/ microphones placed at th¢,, sampling points withirf2 (with

uniform or random sampling, cf. sec. 3.2.2), we acquire tg#a signalsp(t,,, X,n), of lengthN samples each. Second,
we can reconstruct the PAF using the following algorithm:

(a) The shared wavenumbeis are estimated using a joint estimation of damped sinus@idponents (using for
example the algorithms MUSICESPRIE, or SOMP). Note that this stage corresponds to a sparse decompositio
of the M signals using a joint sparsity model with damped sinusoids.

(b) The matrixP of signalsp(t,, Xm) can be written ag = ®G, where is the matrix of modesp,,, ;) = Aqqsq()fm),
and( is the dictionary of damped exponentials, ,; = ¢/*s“ »; see equation (3). Theh is estimated using the
{5 optimization:® = PGH (GGH)~ 1,

(c) From (4), ¢ =~ Y404 Wherey, is the matrix of the plane waveg, (,,, ;) = equ,,Xm, sharing the same wavenumber.
Thek,,’s are chosen using a uniform sampling of the spHetkof radius|w,|/co. Then, the coefficients,, , are
estimated using the projection of evefy into the corresponding basis ¢f, as follows:a, = (zbfiﬁq)_ll/}fgzﬁq.

(d) Finally, the PAF can be interpolated for ahy [0, N/F,] and at any positiorX € © using the approximation:
Bt X) = Y0, g, e/kacottho X,

Note thatP is a real matrix, hence the coefficients of the complex modes ko obey the hermitian symmetry. This
implies: oy = o>, k, = —k* andk,, = —k_,,, where the symbol* denotes the conjugate. Actually, this

hermitian symmetry is used in stages (b) and (c) in orderdaae the size of matrices.



The number) of modes is chosen according to a modal analysis of the tbdhincreases with the bandwidth, and if
@ > N stages (a) and (b) cannot be led. The reason is that onlyntleeniformation is exploited in these stages. The next
section presents a stronger sparsity property, which takesiccount simultaneously the information of time andcgpa

3.2 Plane wave sparsity

In this section, we study the solutions of the wave equatiaihé simple case of a rectangular room. From this study, we
exhibit a stronger property of sparsity which justifies tise of the Compressed Sensing framework (CS).

3.2.1 Modal analysis in a rectangular room

In the case of a rectangular room with rigid walls, we can nthkevariable separatiéfin cartesian coordinates;, y, z).
Then, each modal shape is written as the product of 3 furetibone variable. WithX = [z, y, z]T, the PAF becomes:

p(t, X) = Y Ay Fuglx) Fyqly) Feg(2) a0t (5)
qEL*

For each mode, these functions verify the 1-D Helmholtz equati@hr, + k2F, = 0 for v € {z,y, z}. With rigid
walls, thek,’s are real constants such thigt+ kf/ + k2 = k? (cf. Ref. 12). According to the Helmholtz equation, for each
cartesian coordinatethe F,’s are the sum of 2 solutiond?, (v) = A} e/**? + A e~7%. Then, expanding’, F, F., the
modal shape, (X) is written as the sum of 8 plane waves/*=+ikvtik:= — oiFX with k& = [k, +k,, +k.]7.

In the case of non rigid walls, as the wavenumbeas complex:k = (w — j&)/co, thek,’s are complex too. This
implies a slight decrease of th s near the walls. Nevertheless, far far from the walls, we assume that the imaginary
part ofk,, is negligible, and that? + k7 + k2 = R.(k)* = w?/co®.

Note that in the case of a rectangular room, the waveveEtafs{ikx, +k,, +k,]T are at the vertices of an inscribed
parallelepiped of the sphere with radiug/co. Moreover, whereas the modal densistrongly increases with the fre-
quency, all the wavevectors are uniformly spaéed the k-space (with coordinatés,, ky, k.).

Consequently, in a bandwidth containia@ complex modes, the PAF can be written as the surm66j harmonic
plane waves in the case of rectangular rooms. Note that iprh@ous section, each modal shape was approximatdd by
fixed plane waves sampling uniformly the sphere of radiugsc,, whereas here, with the assumption of rectangular room,
only 8 plane waves are required by mode. Then, this stroqgesisy property justifies the use of CS techniques.

Although this model doesn’t hold for arbitrary geometrieglihdrical rooms for example), it can nevertheless be
extended to non rectangular rooms. Indeed, if all walls &Be) we can assume that the modal shapes are still sparse on a
dictionary of plane waves. The corresponding wavevect@siat necessarily at the vertices of a parallelepiped,Hmyt t
are always on the sphere.

3.2.2 Compressed Sensing framework

The general problem consists in the reconstruction of aasigre R* from M observations:,,, linked by the linear
systemr = ®y. Compressed Sensing (CS) deals with the underdetermined case, for which therenare unknowns than
equations &/ > M), cf. e.g. Refs. 13,14. As such a problem cannot be solveldowitadditional hypothesis, the
underlying idea is that if lives in a subspace of dimensidhand with basis), for I < M, we can solvey = ya writing

x = &y = dypa = fa. However, in general we do not kna

Then, we defineC vectorsy;, forming the matrix? with £ > C, and we look for a basis which explaigs In other
words, we look for a vectorr ¢ R” K-sparse (where no more thdt coefficients are non-zero), such that= Va.
Unfortunately this problem is not convex and difficult toeal However, we can change it into a convex problem by
considering the followinddasis Pursuit Denoising approach:

min |lalle, subjectto ||z — dPall,, <e, (6)
a€ERE

where the nornt,, is given by|y|l,, = (3, |v:|")*/", ande is a fidelity parameter. A high allows a stronger sparsity of
«, and a smalt improves the reconstruction gf

*The modal density is related to the number of modes per frequencg.rang



Some theoretical results (cf. e.g. Refs. 15-17) give a seffficondition for reconstructing in the case of sparse
signals, by the so-called Restricted Isometry Propert?JRt quantifies howpb and¥ are mutually incoherent with respect
to their use on sparse signals. In practice, the RIP is diffiocompute, but it is verified with high probability for sem
random sampling matrices. This encourages the use of rdpdmiected observation points in practice, which are here
the microphone positions in the 3-D space. Note that, caelgra regular sampling grid might lead to a strong coriatat
with plane waves, whenever the wavenumber gets close tadgredlto one of the;, y or z axis : such standard sampling
scheme is therefore likely to be suboptimal in the CS frammkwo

3.2.3 Reformulation of the problem in a Compressed Sensingdmework

Now, we can reformulate our problem as follows: let us defipehe signal vector of the measuremepts,, X, ), and
S, the signal vector that we wish to reconstruct (interpolatef uniform grid of the space:

S:c (L Hm-1)N] — p(tna)?m)a and Sy [(nLHs-1)N] — p(tnv?s)a (7)

where theX,,’s are the positions of thd/ microphones of the array, and the’s are the positions of the 3-D grid.
Considering the ideal reconstruction using a uniform afciysec. 2)S, andS, are linked byS, = ¢,,S,, where®,,,
is an interpolation matrix representing the spatial comtioh for interpolating the PAF aX,,, starting from the signals on
the grid of the?s’s.

Since the number of microphones is limited in practice, wencadirectly reconstrucs, from S,. However, thanks
to the sparsity property of the PAF as described in sec. 3iid possible to solve this problem using CS. The rough
idea is to define an oversized dictionaky with harmonic plane waves which are “virtually” sampled be grid. Then,
writing S, = ¥, «, in principle the problem might be solved wih, = ¢,,¥,a. Unfortunately because of the space
dimensionality (4-D), standar€l optimization algorithms of (6) would require too much megnand cannot be run on
standard computers. Hence in the next section we propossedygalgorithm for the interpolation of the PAF.

4. ALGORITHMIC DETAILS

When/; optimization procedures cannot be processed because plutational issues, greedy algorithms such as Match-
ing Pursuit are commonly used. However, with the size of dathis work, even this algorithm is too cumbersome to be
computed in practice. In this section, first standard Magtrursuit is presented, then we propose a derived versimhwh
can be applied for the sampling of the PAF in 3-D.

4.1 Matching Pursuit

Matching Pursuit!® consists in iteratively subtracting from the signal thenatibat best approximates it. This atgis
chosen among the columns of a dictionary mairpof size(MxL). Then the process is iterated on the residual which is,
at the iteration+1:

Ti+1 =T — Q4 Giy (8)
with 7, the signal to approximate, and where the vegtaand the coefficient; are chosen to minimizgr;11|¢,. If the
column vectors off are normalized, the optimal atomgs = arg max, ., (g, ;)| and the optimal coefficient is given by
the correlationy; = (g;,r;) := g”r;. The symbol* denotes the conjugate transpose of a complex matrix or avect

A similar method consists in searching at each iteratioroagof P atoms simultaneously minimizing the norm of the
residualr; 11 = r; — Ga, whereG is a(MxP) matrix of P atoms, andv is a(Px1) vector. If the atoms are normalized,
and ifrank(G) = P with P <M, the optimal matrixG; minimizes

-1
Iriallz, = IrllZ, = rf G (GTG) Gry, 9)
and the weight vector is then= (G G)~'GHr; = GTr;, where the symbal denotes the pseudo-inverse of a matrix.

In the present work, we first considered the application ofddiag Pursuit considering groups 8fharmonic plane
waves which share the same wavenumber. For example, trengetar room considered in section 3.2.1 led?te= 8.
Unfortunately, because of the dimensionality of the prohli is not possible to use this algorithm as such. Indeedram
a high number of possible wavenumbérs- (w — j¢)/co (that belong to a subspace of dimension 2), we would have to
test a wider number of possible combinationgplane waves on the sphere of radiw&: (in a subspace of dimension
2P). Consequently, the matricéslive in a subspace of dimensi@+- 2P, and exhaustive search for the most correlated
vector is in practice impossible. In the next section, wepse a modified algorithm which alleviates this problem.



4.2 Modified algorithm

Let us defineS the (Vx M) signal matrix such tha$/,, ,,) = p(tx, X‘m), ands its vectorized version as in equation (7),
S = S,.. The residual vectors will be notéd;, and their(NxM ) matrix versionsk;.

4.2.1 Analysis

The principle of the proposed algorithm is as follows: atrgveerations, first we choose the damped complex exponential
which best approximates thieé columns ofR; (time signal vectors), and so a wavenumbee (w; —j&;)/co is estimated.
Then we choose a group & harmonic plane waves (on the sphere of radiy&:) which efficiently explains the residual
Ri. For more details, the 4 stages of the iterati@ne detailed here:

(A) This stage is similar to the search of poles of SOMWP/e define the N x L;) time dictionary matrix® with L;
columnsf, which are damped complex exponenneﬂﬁ g = O = = ebtln elwetn with w, € [0,w.] and&, < 0.
Then defining the{thM) correlation matrixy; := R;|, we choose the inde& which maximizes the sum of
energiesy_, (nij,m))?. Here,© corresponds t® Where the columns are individually normalizeltd:= 6,/|0/|¢, -

(B) With the estimated wavenumbegy,, we define an(M N x L) dlctlonary matrixA; with L, columnsé; , which
are harmonic plane waves; ; (( 1)1 (m-1)n] = €' e/«atn eTkeXm, W|th lkell2 = we, /co, V2 € [1, L. Then,
with W > P, we isolatelV atomsd; , which are the maxima of;, := (i, Ri)|. Note thatp; can be written

= |Af{7€i\. Actually, because of possible lobésnust index a 2-D grid of the sphere of radius /co, and the
chosen atoms are th& higher local maxima.

(C) Among thesé&l” atoms, we test all combinations Bfatoms (there ar(gvg) possible combinations). Then we choose
the combinatiorG; which minimizes (9):|R;41117, = IR:ll7, — RFGGTR,. with G an(M N x P) matrix of one
combination ofP vectors.

(D) Finally, the best combinatio; is subtracted. Actually, here we have to consider the heaméymmetry for real
signals, and so defining; = [G;, G¥], the residual+1 is: R; ;1 = R; — Givi, with o, = G/ R,

Compared to the standard Matching Pursuit algorithm ptesldn section 4.1, this new algorithm requires less time:
in the first stage, no space information is used, @nd a relatively small matrixN x L), independent from. Moreover,
if the frequency grid of they,’s is uniform betweer) and F; /2, using the Fast Fourier Transform makes the computation
of n; faster. Then in the second stage, the atoms are individtedhgd on a sphere (subspace of dimension 2), which
facilitates the process; and only tHé best atoms are selected for the stage (C)VIfs properly chosen, the numbéﬁ )
of possible combinations remains reasonable.

Moreover, in stages (B), (C) and (D), taking advantage oWtréable separation, we can significantly reduce the sizes
of the matrices. For example in stage (B); is an(M N x L) matrix, while p; can be computed by; = \95 R; ®f|,
whered,, is the(N x 1) vector chosen in stage (Ady, () = e e“4: ' and®; is an(M x L) space dictionary matrix
such that®;;,,, o = e/*Xm  with ||&¢[|2 = we, /co.

Knowing the number of theoretical modé€s which depends of the room geometry (cf. e.g. Ref. 12), asiirciple
every group ofP plane waves corresponds to a mode, in this work we choosauthber of iterations equal Q.

4.2.2 Projection and interpolation
At the end of the) iterations, we geV’ = @) P estimated harmonic plane waves, with wavenuni@eand wavevectok,.
They define the atoms of tHé/ N x V') basis matrixB,.:

B, [(n+1)+(m—1)N, v] — ejkvtn ejk/,,me with HEUH2 = wv/CO >0, andk, = (Wv - jgv)/c() . (10)

Then with A, := [B,, BZ], considering positive and negative frequencies, we calieghe optimal solutios, = A,a
in the least mean square sense with= A1 S,, which would require complex calculus. In order to reducemogy
requirements and makes computation faster, it is prefer@bmanipulate only real coefficients. Thens obtained as
follows:

Re{B,}, — Im{By} } 's.. (11)

N |

ap) = CLFUJFV] = [[y) +jﬂ[1,+v], withv € [1,V] andu =



If the problem of (11) is ill-conditioned, in practice we rewe some atoms aB, which are linearly close to some
others. Note that the use of an orthogonal projection inestBg (as with theDrthogonal Matching Pursuit!® algorithm)
would partly solve this issue, but the associated compmurtaticost would be prohibitive for the problem at hand.

Finally, the interpolation at any positidfi € 2 and any time € [0, N/F], is done by:

\%
ﬁ(ta }7) = Z Qo] ejkvt ejk,,Y’ (12)

v=1

or S, = A,a whereA, corresponds to the matrix basis of harmonic plane wavesgdkitiony . Note that while the
matrices are normalized in section 4.2.1, in (11) and (B2)and A, are not normalized.

5. EXPERIMENTS AND RESULTS

In the following, we present some results of the two algonitof sections 3.1 and 4.2. They will be named met@8tdand
methodCS2 respectively. Note that here, the first stage of CS1 uses SOMiR interpolation is evaluated using the Signal-
to-Noise Ratio (SNR) [dB] and the Pearson correlation coieffitc [%)]. With s the (N x 1) vector of the target RIR, such
thats(,) = p(t., X ), ands its interpolation: SNRg = 201log ([[s|le, / ||s — 3]|e) @nde = 100 [(s,3)| / (||slles- [|3]les) -

Table 1 compares the uniform sampling to the methods CS1 &2d Bere, we aim at reconstructing the RIRs within
a cubef of side1.7m, starting from)M simulated RIRY2° of a virtual array (regular for the uniform sampling, random
for CS1 and CS2). The cutoff frequencyfis= 250Hz, the sampling rate i8; = 750Hz, and the SNRs are averaged over
2744 interpolation positions 2. Note that the regular array respects the Shannon theoranyicased, < 2¢q /f.. We
observe that, for a given number of microphones, method @ffisantly outperforms uniform sampling (cf\/ = 64
or 125). Equivalently, method CS1 can obtain equivalent perforcesas regular sampling, but with a smaller number of
microphones (see for instandé = 64 for CS1 andM = 216 for the uniform sampling). According to these preliminary
results, method CS2 does not seem to be competitive; weenlits benefits at a later stage.

Methods uniform sampling method CS1 method CS2
M (number of microphones)) 64 | 125 | 216 || 64 96 | 125 | 64 96 | 125
SNR [dB] 15.9| 21.7| 25.0|| 24.2| 29.6 | 30.6 | 13.6| 14.8| 15.4

Table 1. Comparison between the uniform sampling and methods CS1S#hd C

We have then designed a real 3-D array with 120 electret ipicoes, randomly positioned within a cube of size 2m.
The room has dimensions (3.8, 8.15, 3.6)m, it was emptiedtilhad features that made it non-ideal: a doorway, two
windows, a cornice, concrete walls, wood panels, etc. Thecsas a baffled loudspeaker placed far from the array, and
the RIRs have been measured using sine sviéépshe bandwidth [50, 1000]Hz. The sine sweeps were long gmou
in order to reduce the noise of measurements. In order tatesthe modes below a cutoff frequengy we have used
a low-pass filter, and a downsamplingfat > 2f.. The microphones are placed at random positions withimith a
statistical distribution close to uniform - up to mechahmanstraints. The set of microphone positions has beehraadid
using a optimization procedufe with the measured positions as initial estimates.

As mentioned earlier, when the cutoff frequentyincreases, the modal density strongly increases, and #rsitgp
assumption becomes less and less valid. Indeed, the nuriibeooetical modes has been calculatednd table 2 shows
that it increases faster tha. However, the experimental reconstruction SNR remaingrisingly stable with respect to
fe. Note that the analysis for more than 363 modes requires tadhmrmemory for our computer, and therefore we could
not test forf. > 350Hz.

fe [Hz] 250 | 275 | 300 | 325 | 350
Number of modes 120 | 160 | 216 | 280 | 363
SNR [dB]: method CS1| 17.8 | 19.0 | 20.1 | 20.6 | 20.3
SNR [dB]: method CS2| 159 | 16.0| 16.3 | 16.1 | 15.8

Table 2. Results for different cutoff frequencies.



In figure 1, two interpolated RIRs are displayed (for the twetimods CS1 and CS2). One microphone of the array has
been isolated for the interpolation, and the analysis has Hene using the 119 others. Hgre= 300Hz andF, = 750Hz.
Results shown that the interpolations are similar to thesmesl RIRs, both from the SNR and correlation performance
measures.

(a)
0.21- i i Measure at Xm
— - —Interpolation: method CS1
><E 0
E .
-0.2 SNR=9.7dB, correlation= 95.8%.
I il I I I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
(b) 02l Measure at Xm
~ ) - —Interpolation: method CS2
== 0
E .
-0.2~ SNR=12.3dB, correlation=97%.
I I I I I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Time [s]

Figure 1. Measured and interpolated RIRs. (a): Method CS1, (b): dde@t52.

Figure 2a shows the performance of the interpolation adegrio the distance between the interpolation position and
the center of the array. Here, each measured RIR has beepoaiatied using the model parameters from the analysis of
the remaining 119 measured signals. We ugeée- 300Hz, andF, = 750Hz. The microphones are grouped according
to their distance from the center of the array. In each grarpesponding to a distance range, we estimate the average
reconstruction error and the corresponding standard tilewviaAs expected, performance decreases when the in&tiqrol
position moves away from the center, although it can be edtibat with method CS2 they decrease slower than with
method CS1.

Figure 2b shows the performance of the interpolation whethgfic noise:,, is added to the measurement signals. It
can be observed that, as expected, performances decreas¢hemoise level increases. At high noise levels, methad CS
appears more robust than method CS1: the least-squaretwojef method CS1 tries to fit the whole (noisy) signal with
the model, while the “sparse” method CS2 is intrinsicallyeaaising framework.

@ 275F T (®) 275F T : -
25 O  method CS1 |4 25 O  method CS1 |4
222-3: ¥ method CS2[] 222-3: % ¥ method CS2[]
g [ 04 ] A SESPEARE:
X 125t 1 X 125t %
g 2ot %, ] & 1o % *
7.5F 1 751 1
i %] i 3 LA
250 & 1 25F @) o
Oo 0.33 0.66 0.99 1.32 1.65 7% dB _15dB _10dB _5dB 0dB 5dB  10dB
Distances to the center [m] Noise level [dB]

Figure 2. (a): Evaluation according to the distance from the center ofthg gb): Evaluation according to the level of the additional
noise. The x-axis is, on a dB scale, the energy of the additional nfige, /||s||e, over the energy of the measured signals. These
statistical representations show the average of the SNRs and the stdedattbn.

We have checked the robustness of both methods to the ggoofi¢iie room, in particular when the measured room
gets further away from the “ideal” rectangular room. This baen made by opening the windows and the door, and by
placing a chair and a wood panel. Experimental results f& iRterpolation show that the performance of both methods
was not significantly affected by this change of geometry.



In figure 3, the performances are evaluated according touh#ar of microphones for the analysis. Here, we have
randomly selected 16 microphones close to the center of rilay é&distance smaller than 80cm). As a general trend,
performance decreases wifli. It is however interesting to notice that with less than 4@rophones, method CS2
outperforms method CS1, and with only 32 microphones thesSiRrage is approximately 10dB.
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M (numbers of microphones for the analysis).
Figure 3. Evaluation according to the number of microphones of thg.arra

6. CONCLUSION

Using the modal theory, it is possible to use Compressedii@eirsorder to sample and to reconstruct the Plenacoustic
Function at low frequencies, with a number of sensors samfly lower than would be required by Shannon-Nyquist
sampling theorem. More precisely, we have shown that ounodetesults in a tradeoff between the number of microphones
and the precision of the interpolation. Moreover, our mdtatbows for a flexible array configuration : we experimented
here with microphones randomly placed in the space volumatefest(2, with a spatial distribution close to uniform
probability. Other antenna geometries could be testedilplggesulting in better performance.

The reduction in the number of measurements / microphot@sed by Compressed Sensing can be important in prac-
tical applications. However, it comes with a computatior@dt that can rapidly become prohibitive. The two algorghm
presented in this paper have been tuned so that they stilluteim reasonable time on a PC: the MATLAB analyses of
section 5 spent almost one hour with a 6 core CPU at 3GHz anch a#RAM.

As shown is section 5, the first algorithm (method CS1) giveskent results in favorable cases, whereas the second
one (method CS2) seems more robust to noise and the distamcéhfe center of the array.

Here, the PAF reconstruction is limited to the lower frequies of the spectrum, but on a wide time interval. A
complementary approach can similarly interpolate theyqzatt of the RIRs over a wide frequency range with a reduced
set of measurements, using the sparsity of the early refiexicf. Ref. 23). By fusing both approaches, we hope to
extrapolate the full RIRs in time and frequency.
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