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Optimizing Source and Sensor Placement
for Sound Field Control: An Overview
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Abstract—In order to control an acoustic field inside a target
region, it is important to choose suitable positions of secondary
sources (loudspeakers) and sensors (control points/microphones).
This paper provides an overview of state-of-the-art source and
sensor placement methods in sound field control. Although the
placement of both sources and sensors greatly affects control
accuracy and filter stability, their joint optimization has not been
thoroughly investigated in the acoustics literature. In this context,
we reformulate five general source and/or sensor placement
methods that can be applied for sound field control. We compare
the performance of these methods through extensive numerical
simulations in both narrowband and broadband scenarios.

Index Terms—source and sensor placement, sound field con-
trol, sound field reproduction, subset selection, interpolation.

I. INTRODUCTION

THE aim of sound field control is to synthesize a desired
sound field inside a target region. It can be applied to var-

ious settings including high-fidelity audio, virtual/augmented
reality, and noise cancellation systems. A typical strategy for
sound field control is to control sound pressures at multiple
discrete positions, i.e., control points inside the target region,
using multiple secondary sources, i.e., loudspeakers [1]–[7].
In general, the inverse of a given transfer function matrix
between secondary sources and control points is calculated
in a (regularized) least-squares-error sense; this is referred to
as the pressure matching method. The positions of secondary
sources and control points have a great effect not only on
the control accuracy but also on the stability of the inverse
filter. Therefore, these positions must be carefully chosen. In
practical applications, it is often necessary to cover the entire
target region with high accuracy while using the smallest
possible number of secondary sources and control points,
since the measurement of transfer functions is costly and
time-intensive. Unstable inverse filters increase sensitivity to
perturbations in transfer functions and can lead to extremely
large loudspeaker outputs. Moreover, when the control points
of the sound pressures are arranged on the boundary of an

S. Koyama is with the Graduate School of Information Science and
Technology, the University of Tokyo, Tokyo 113-8656, Japan (e-mail:
koyama.shoichi@ieee.org).

S. Koyama is also with JST, PRESTO, Saitama 332-0012, Japan.
G. Chardon is with the Laboratoire des Signaux et Systèmes
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enclosed region, it is known that the sound field inside this
region cannot be uniquely determined at several frequencies,
leading to significant deterioration of the control accuracy [8].
This nonuniqueness property is called the forbidden frequency
problem.

In the context of sound field recording and reproduction,
a similar problem has been addressed by modeling a sound
field in a continuous setting, usually under the free-field
assumption [9]–[11]. The positions of the loudspeakers for
reproduction and microphones for recording are generally
determined by regularly discretizing the continuous surface
of the array. The forbidden frequency problem is typically
avoided by using microphones mounted on an acoustically
rigid object, directional microphones, or multiple layers of
microphone arrays [10], [12]–[15]. This regular placement
performs well in a free field and when the array has a simple
shape, such as a sphere, plane, circle, or line. However, it
may be suboptimal for the more complicated geometries used
in practical situations and in a reverberant environment, as
addressed in the pressure-matching-based sound field control.

As discussed above, to the best of our knowledge, joint
optimization of the source and sensor placement for sound
field control has not been thoroughly investigated, especially
for an arbitrary shape of the target region. The loudspeaker
placement problem has been tackled in the context of active
noise and structural acoustic control [16]–[21]. Recent studies
on loudspeaker placement methods for sound field reproduc-
tion were compared in [22]. Most work related to control-
point placement in the literature has been about microphone
array design [23], [24]. Nevertheless, a large number of sensor
placement algorithms have been investigated in the context of
sensor networks and machine learning. Most of them solve a
selection problem from predefined candidate positions, and ef-
ficient algorithms for solving this combinatorial problem have
been derived on the basis of various criteria from experimental
design [25]–[28] or information-theoretic measures [29]–[31].
A method based on frame potential [32] has been proposed
for both source and sensor placement [33], [34]. Finally,
we recently proposed a joint source and sensor placement
method for sound field control that was based on the empirical
interpolation method [35].

The objectives of this paper are to give an overview of the
state-of-the-art algorithms for source and/or sensor placement
in the sound field control problem and to report the results of
comparing five of these methods in terms of performance and
computational complexity. As mentioned above, some of these
methods applied to this problem have been proposed in various
contexts; however, their application and experimental compari-
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Fig. 1. Controlling sound field inside Ω with secondary sources placed on
∂D.

son have not been previously reported. In particular, one must
reformulate some of these methods for the sensor selection
problem when applying them to the broadband scenario. We
describe, in a unified manner, five representative methods for
this problem and provide the corresponding algorithms. These
methods are compared in terms of control accuracy and filter
stability by performing numerical simulations. All the code for
reproducing the experimental results is available online [36].

The paper is organized as follows. The sound field control
problem is defined and related works are overviewed in
Sect. II. In Sect. III, the five source and/or sensor placement
methods are introduced. The results of numerical simulations
carried out to compare these methods are reported in Sect. IV.
Finally, Sect. V concludes this paper.

A. Notation

Italic letters denote scalars, lower case boldface letters
denote vectors, and upper case boldface letters denote tensors
of order two or more, including matrices. The sets of real and
complex numbers are denoted by R and C, respectively.

Subscripts of scalars, vectors, and tensors indicate their
indexes. For example, xi,j is the (i, j)th entry of matrix X, and
xi is the ith vector extracted from X. The submatrix extracted
from X using sets of indexes I and J is denoted as XI,J .

The imaginary unit is denoted by j. The complex conjugate,
conjugate transpose, and inverse are denoted by superscripts
(·)∗, (·)H, and (·)−1, respectively. ∆ represents the Laplace
operator. The absolute value of a scalar x is denoted as |x|.
The ℓp-norm of a vector x is denoted as ∥x∥p.

The sound velocity, angular frequency, and wave number
are denoted as c, ω, and k = ω/c, respectively.

II. SECONDARY SOURCE AND SENSOR PLACEMENT FOR
SOUND FIELD CONTROL

A. Sound Field Control Problem

We here define the sound field control problem. Suppose
that region Ω is included in or coincides with region D, as
shown in Fig. 1. We assume that the sound field inside Ω is
synthesized by secondary sources placed on the boundary of
D, ∂D. Region Ω and surface ∂D are referred to as the control
region and secondary source surface, respectively.

Sound field u(x, ω) satisfies the Helmholtz equation in D
as

∆u(x, ω) + k2u(x, ω) = 0, (1)

where x is the position vector. On the basis of the single-layer
boundary integral [37], u(x, ω) can be represented using a
continuous distribution of sources on ∂D. This integral is the
theoretical foundation of sound field synthesis methods [38],
such as wave field synthesis [9], [39], [40], higher-order
ambisonics [10], [41], [42], and the equivalent source method
for sound field reconstruction [43], [44]. Using the free-field
Green’s function Gm(·, ω) on ∂D, u(x, ω) for x ∈ D is
represented as

u(x, ω) =

∫
y∈∂D

φ(y)Gm(x|y, ω)dy, (2)

where φ(·) is referred to as the source density and Gm(·, ω)
is defined as

Gm(x|y, ω) =
exp(jk∥x− y∥2)

4π∥x− y∥2
, (3)

which corresponds to the transfer function of a monopole
located at y. Hereafter, ω is omitted for notational simplicity.
This equation means that an arbitrary homogeneous sound
field inside D can be synthesized by continuously distributed
monopoles on ∂D, which are driven by φ(y), assuming free-
field propagation. When D is a simple shape such as a plane
or sphere, φ(y) can be analytically derived [38]. However,
it is difficult to obtain an analytical form of φ(y) when
D has an arbitrary geometry or the transfer function of the
secondary source cannot be approximated by a monopole, such
as when it includes reverberation. An additional problem is the
nonuniqueness of the determination of φ(y) through the inte-
gral equation at forbidden frequencies, i.e., eigenfrequencies
of domain Ω with Dirichlet boundary conditions [8].

In practice, a continuous distribution of secondary sources
must be approximated by a discrete set of loudspeakers. Syn-
thesized sound pressure usyn(x) at position x is represented by
a linear combination of transfer functions of the loudspeakers:

usyn(x) =

L∑
l=1

dlgl(x), (4)

where dl and gl are the driving signal and the transfer function
(Green’s function) at x for the lth loudspeaker, respectively.

The driving signals dl can be determined either by approx-
imating integral (2) with a finite sum or by minimizing the
objective function

J =

∫
x∈Ω

∣∣∣∣∣
L∑

l=1

dlgl(x)− udes(x)

∣∣∣∣∣
2

dx, (5)

which aims to minimize the mean square error of the recon-
struction in the domain Ω of interest. The secondary source
placement problem is twofold.

• The discrete set of secondary sources should be able to
generate desired sound fields, such as plane waves and
monopoles, in Ω.

• The sound field should be synthesized in a stable manner
such that the amplitudes of the required driving signals
of the secondary sources are bounded.

The minimization of J is difficult to solve directly because
(5) includes an integral with respect to x. Moreover, it is
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difficult to measure or estimate gl(x) in the entire Ω for
continuous x, especially in a reverberant environment. A
typical strategy for minimizing J is to discretize x inside Ω
and consider the following criterion:

Jd = ∥udes −Gd∥22, (6)

where udes ∈ CM is the vector of the desired pressures at M
discrete positions inside Ω, i.e., control points, G ∈ CM×L is
the matrix of the transfer functions between secondary sources
and control points, and d ∈ CL is the vector of the driving
signals. Then, d can be obtained by

d = G†udes, (7)

where (·)† represents the Moore–Penrose pseudoinverse. This
strategy is referred to as pressure matching. Since the calcu-
lation of the inverse of G frequently becomes unstable, it is
usually necessary to regularize (7). For instance, the use of
Tikhonov regularization for the case of M ≥ L is represented
as

d =
(
GHG+ λI

)−1
GHudes, (8)

where λ is the regularization parameter.
The sensor or control point placement problem is to build

a set of control points such that the error Jd computed on
the control points is an appropriate proxy for the continuous
error J , or equivalently, a set of sampling points allowing
accurate reconstruction of the sound field in Ω. As pointed
out above, an inadequate choice of sampling points will not
allow a fine control on the sound field. In particular, at
the forbidden frequencies, eigenmodes of Ω with Dirichlet
boundary conditions will not be observable by control points
located on the boundary of Ω.

The secondary source and control point placement problem
is to design sets of both sources and control points, possibly
jointly, such that sound fields in the continuous domain Ω
can be synthesized by a discrete set of secondary sources
and controlled at a discrete set of points. A simple solution
would be to finely discretize ∂D and Ω to approximate
integrals (2) and (5). Apart from the obvious cost and the
physical constraints preventing the use of a large number of
loudspeakers and microphones, excessively dense sampling
leads to extremely high redundancy of the transfer function
matrix G, especially at low frequencies. Furthermore, since
it is necessary to measure the transfer functions by using
loudspeakers and microphones to obtain G, it is preferable
that the numbers of secondary sources and control points are
as small as possible. Their positions also have a great effect
on the control accuracy and filter stability.

Finally, this placement problem poses the challenge of
computational complexity. Indeed, the size of the sets of
possible secondary sources and control points grows rapidly
with the size of the control domain and the frequency. For
example, in numerical analysis using the boundary element
method, a common criterion for discretization is 6 nodes
per wavelength [45]. For a cubic control region of 2.0 m
length with secondary sources on its surface at a frequency
of 1.7 kHz, there are 21,600 and 216,000 possible positions

for loudspeakers and control points, respectively. Quadratic or
even cubic complexities in time and memory will limit the
application of an algorithm to small control domains and low
frequencies.

B. Related Work on Secondary Source and Sensor Placement

In the context of sound field reproduction, the concept of a
continuous secondary source distribution has been employed.
As an example, we assume that Ω and D are spherical with
radii RΩ and RD, respectively. Position vectors x ∈ Ω and y ∈
∂D are represented in spherical coordinates as x = (r, θ, ϕ)
and y = (RD, θD, ϕD), respectively. Then, the desired sound
field udes(x) can be represented by the spherical wave function
expansion as [10], [46], [47]

udes(x) =

∞∑
ν=0

ν∑
µ=−ν

ũµdes,νjν(kr)Y
µ
ν (θ, ϕ), (9)

where jν(·) is the νth-order spherical Bessel function of the
first kind and Y µ

ν (·) is the spherical harmonic function of νth
order and µth degree.

Y µ
ν (θ, ϕ) =

√
2ν + 1

4π

(ν − µ)!

(ν + µ)!
Pµ
ν (cos θ) exp(jµϕ) (10)

Here, Pµ
ν (·) are the associated Legendre functions. Since the

secondary source distribution on ∂D is assumed to be con-
tinuous, the expansion coefficients of the driving signals and
transfer functions can also be defined as d̃µν and g̃µν (r−RD),
respectively. We here assume that the transfer function of
each secondary source is monopole; therefore, g̃µν (r − RD)
is approximated using the expansion coefficients of Gm(x|y)
as

g̃µν (r −RD) ≈ jkjν(kr)hν(kRD)Y µ
ν (θD, ϕD)∗, (11)

where hν(·) is the νth-order spherical Hankel function of
the first kind. It is also possible to take the directivity of
the secondary sources into consideration if all the secondary
sources have the same directivity, and their directional charac-
teristics are known [48], [49]. Then, the expansion coefficients
of the synthesized sound field ũµsyn,ν can be represented by the
product of d̃µν and g̃0ν(r −RD) as [50]

ũµsyn,ν = 2πR2
D

√
4π

2ν + 1
d̃µν g̃

0
ν(r −RD). (12)

Since the synthesized field should be coincident with the
desired field, i.e., ũµsyn,ν = ũµdes,ν , the driving signals of the
secondary sources can be obtained as [10]

d̃µν =

√
2ν + 1

4π

jν(kr)

2πR2
Dg̃

0
ν(r −RD)

ũµdes,ν

=
1

2πjkR2
Dhν(kRD)

ũµdes,ν . (13)

In practice, the secondary source distribution must be dis-
cretized as an array of loudspeakers. Platonic solids can
be used for uniform sampling on the sphere; however, the
number of samples is constrained, i.e., 4, 6, 8, 12, and 20
samples, corresponding to vertexes of the platonic solids.
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Nearly uniform sampling schemes [51], such as t-design [52],
allow the use of a wider range of sampling sets. The advantage
of the (nearly) uniform sampling scheme is the small number
of samples for a certain maximum expansion order νmax,
which determines the frequency and range of the region of
accurate reproduction [23], [53]. When secondary sources
are distributed within a 2D plane, such as in a circular
arrangement, some reasonable approximations for the 3D field
are possible in this analytical approach, which is referred to
as 2.5D reproduction. It is in general difficult to apply such
approximation for the pressure matching method.

To estimate the expansion coefficients of the desired field
ũµdes,ν , the sound field is usually captured on the spherical
surface of Ω, which also requires a sampling scheme for the
microphone array design. Furthermore, the pressure distribu-
tion on the sphere is not sufficient to uniquely determine the
sound field inside Ω at several frequencies because of the
forbidden frequency problem. This nonuniqueness is caused
by the existence of eigenmodes of the Helmholtz equation
with Dirichlet boundary conditions. At an eigenfrequency,
since an eigenmode has nonzero values inside the sphere but
zero values on its boundary, it makes the estimation of its
amplitude impossible using microphones on this boundary
only. Uniqueness can be obtained by using multiple layers,
with measurements inside the sphere where the eigenmodes
have nonzero values, or with directional microphones, making
the forbidden eigenfrequencies complex [12], [54]. Alterna-
tively, microphone arrays mounted on an acoustically rigid
object also prevent this nonuniqueness issue [10], [13], [15],
[55], [56]. Such recording and reproduction methods based
on spatial Fourier analysis of the sound field can only be
applied for simple array geometries [11], [14], [46], [47], [57],
where the regular sampling of the array geometry is usually
applied. Even though this constraint on the array geometry can
be relaxed by constructing a linear equation of the expansion
coefficients of synthesized and desired sound fields, as in the
mode matching method [10], [58]–[61], it is not a trivial task to
obtain its optimal sampling scheme as in the pressure matching
method.

For active noise and structural acoustic control, several at-
tempts have been made at optimizing secondary source place-
ment. The optimal positions are selected from the candidates
on the basis of the mean-square-error criterion with the given
primary source field, i.e., the desired sound field. Nonlinear
optimization techniques such as sequential quadratic program-
ming were applied in [17], [18]. The use of the correlation
coefficients in multiple linear regression is suggested in [16],
[19]. Heuristic algorithms such as genetic and simulated an-
nealing algorithms are proposed for solving the combinatorial
selection problem [20]. On the basis of the Gram–Schmidt
orthogonalization of G, Asano et al. [21] proposed an efficient
algorithm that does not strongly depend on the desired sound
field. The details of this method are described in Sect. III-A.
In recent studies, sparse approximation algorithms [62], [63]
have been applied to the loudspeaker placement in sound field
reproduction [64]–[66]. A singular-value-decomposition-based
algorithm was proposed in [67], and a comparative study of
these recent loudspeaker placement methods was presented

in [22]. Again, however, these methods strongly depend on the
specific desired sound field even though it will vary in practical
applications. On the other hand, control-point placement has
not been specifically addressed in the literature with a few
exceptions [17], [68]. The authors recently proposed a method
for joint source and sensor placement for the sound field
control problem, which is independent of the desired field,
on the basis of the empirical interpolation method [35] (see
Sect. III-E for details).

On the other hand, general sensor placement as well as
subset selection has been addressed in many studies on sen-
sor networks and machine learning. The linear measurement
model is usually considered as in (6) by regarding udes as
the observation and d as the parameter to be estimated.
The sensor positions are chosen from the candidate positions
on the basis of some performance measures. Instead of the
mean-square-error criterion in the secondary source placement
methods for sound field control [69], [70], measures on the
Gram matrix T = GHG from the experimental design [71]
are usually used. For example, the cost function can be
formulated as the minimization of the sum of eigenvalues
of T−1 (A-optimality), the minimization of the maximum
eigenvalue of T−1 (E-optimality), and the minimization of
the log determinant of T−1 (D-optimality) [25]–[28], [72].
Information-theoretic measures such as entropy [29], [30] and
mutual information [31] have also been applied. In [33], the
frame potential of the measurement matrix G was used for
the optimization criterion, which has also been applied to the
source placement problem [34]. The optimization algorithms
based on these criteria are classified into three categories:
convex optimization [27], [72], greedy algorithms [28], [31],
[33], [69], [70], and heuristics [25], [26], [29], [30]. These
sensor placement methods based on the linear measurement
model can be applied to control-point placement for the sound
field control problem; however, to the best of our knowledge,
such investigations have not been carried out. Moreover, since
these methods were proposed for general sensor networks, they
must be extended to treat broadband acoustic signals.

III. SECONDARY SOURCE AND SENSOR PLACEMENT
METHODS

In this section we describe five source and/or sensor
placement methods for sound field control, focusing on the
practicality of generic methods, i.e., those that do not use the
knowledge of a single specific desired sound field. Since it is
difficult to directly solve this placement problem, it is relaxed
to the problem of selecting a subset of secondary sources and
sensors from the candidate positions, as described in Sect. II.
We denote the sets of candidate source and sensor locations as
L (|L| = L) and M (|M| =M ), respectively, and assume that
the transfer function matrix of candidate locations G ∈ CL×M

is known, e.g., obtained through numerical simulation. The
goal is to choose an appropriate set of source and sensor
locations from L and M in terms of control accuracy and filter
robustness, where the selected sets of the source and sensor
locations are denoted as S ⊆ L and T ⊆ M, respectively.
Thus, a submatrix of G of the selected locations, i.e., GS,T ,
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Algorithm 1 Source Placement Based on Gram–Schmidt
Orthogonalization
Require: A set of candidate source locations L, a transfer

function matrix G, and number of sources K
Ensure: Source locations S ⊆ L

Set k = 1 and S = ∅
Initialize l1 by using the desired pressure udes as

l1 = arg min
l∈L

∥gl − p∥2
∥gl∥2

,

where

p =
gH
l u

des

(udes)
H
udes

udes

Set the first orthonormal basis v1 = gl1/∥gl1∥2
Update the set of selected and available locations

S = l1 and L = L\l1

for k = 2 to K do
Select the source index so that the angle between the
transfer function vector and the subspace spanned by the
previously identified sources S is maximal

lk = arg max
l∈L

∥el∥2,

where

el = gl −
k−1∑
j=1

(vH
j gl)vj

Set the kth orthonormal basis vk = elk/∥elk∥2
Update the set of selected and available locations

S = S ∪ lk and L = L\lk

end for

can be constructed. Since candidates L and M should be
composed by finely discretizing Ω and ∂D, the exhaustive
search of the subsets from the candidates is impractical.

In addition, a particular set of loudspeakers and control
points should be able to synthesize and control sound fields
in a wide range of frequencies, ideally most of the human
hearing range. Subset selection over a broad frequency range
is obviously more difficult than in the narrowband case as
robustness must be jointly ensured for all frequencies by the
sets of chosen loudspeakers and control points. The set of
target frequency bins is denoted as F (|F| = F ) and its index
is denoted as f for the broadband case.

Two methods proposed for sound field control are in-
troduced; they are based on Gram–Schmidt orthogonaliza-
tion [21] and the empirical interpolation method [35]. Three
general placement methods for sources or sensors based on
D-optimal design [27], mutual information [31], and frame
potential [33], [34], are applied to sound field control.

A. Secondary Source Placement Based on Gram–Schmidt
Orthogonalization

Asano et al. [21] proposed a secondary source selection
method based on Gram–Schmidt orthogonalization. The linear

Algorithm 2 Sensor Placement Based on Determinant
Require: A set of candidate sensor locations M, a transfer

function matrix G, and number of sensors K
Ensure: Sensor locations T ⊆ M

Initialize z = (K/M)1
while (−∇ψH∆z)1/2 > ϵ do

Compute Newton search step ∆z

∆z = −(∇2ψ)−1∇ψ +

(
1T(∇2ψ)−1∇ψ
1T(∇2ψ)−11

)
(∇2ψ)−11

Backtracking line search to compute the step size α ∈
(0, 1]
Update z

z = z+ α∆z

end while
Set T as the set of K largest coefficients of z
Local optimization by swapping one of the K chosen
sensors (T ) with one of the M − K sensors not chosen
(M\T )

independence of the transfer functions is employed for the
optimization criterion. As in Algorithm 1, in the kth step, one
secondary source lk is selected from the unused candidates so
that the angle between its transfer function and the subspace
spanned by the set of the transfer functions of the sources
selected until the k − 1th step is maximal. The lth transfer
function vector gl is projected onto the subspace spanned
by the orthonormal basis vj (j ∈ {1, . . . , k − 1}). The kth
selection lk is chosen so that the ℓ2-norm of the residual
between gl and its projection is maximized:

lk = arg max
l∈L

∥el∥2, (14)

where

el = gl −
k−1∑
j=1

(vH
j gl)vj . (15)

Then, the kth orthonormal basis is set as vk = elk/∥elk∥2 and
S and L are updated. The initial secondary source l1 is chosen
so that the transfer function vector g1 is close to the vector
of the desired sound pressures udes in [21]. In other words,
l1 minimizes the residual between gl and the projection of
gl onto udes. Therefore, only the initial selection depends on
the specific desired sound field. The computational cost of
Algorithm 1 is O(MLk) for the kth iteration and the number
of iterations is the required number of sources K. Therefore,
the total computational cost amounts to O(MLK2) in time.
Memory cost is dominated by the storage of G.

Although Algorithm 1 can only be applied for the narrow-
band case, an extension to the broadband case is also described
in [21]. It is simply achieved by evaluating the (weighted)
average of ∥el∥2 over multiple frequency bins after calculating
el for all F .

B. Sensor Placement Based on Determinant
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A method for sensor selection by convex optimization has
been proposed by Joshi and Boyd [27]. The method is based
on D-optimal design, where the objective is to select sensors
such that the determinant of the inverse of the Fisher matrix
for parameter estimation is minimized. In the case where the
measurement errors are uncorrelated normal variables, this is
equivalent to minimizing the volume of the confidence region
of the estimation of the parameters.

The set of selected sensors is characterized by a vector of
M Boolean values. As the direct optimization of the set is a
combinatorial problem, it is replaced by its convex relaxation
as

maximize
z

log det

(
M∑

m=1

zmg∗
mgT

m

)
subject to 1Tz = K, 0 ≤ zm ≤ 1, (16)

with variable z ∈ RM . With the objective function and
the constraints on z being convex, this optimization problem
can be efficiently solved using, for example, interior-point
methods [73]. The indexes of the K largest elements of z
are taken as the set of selected sensors.

In this relaxed formulation, D-optimality is equivalent to
G-optimality, i.e., the minimization of the maximal variance
of the reconstruction of the acoustic field over the region of
interest [74].

Since it is not necessary to solve (16) with high accuracy
in practice, the following approximate problem, using a log-
barrier to account for the constraints, is suggested in [27]:

maximize
z

ψ(z) = log det

(
M∑

m=1

zmg∗
mgT

m

)

+ κ

M∑
m=1

(log (zm) + log (1− zm))

subject to 1Tz = K, (17)

where κ is a positive parameter that controls the quality of
the approximation. Since ψ is concave and smooth, Newton’s
method is applied to solve (17) as in Algorithm 2. The
computational complexity for computing Newton’s step ∆z is
O(M3), which is dominated by the computation of the inverse
of the Hessian ∇2ψ ∈ RM×M . The total computational
cost depends on the number of iterations. Memory usage is
governed by the Hessian matrix with O(M2) coefficients.

The solution of the approximate relaxed problem (17) is
improved by a local optimization method. Starting with the
vector ẑ comprising the K largest values of z of the solution of
(17), the determinant of the error covariance det Ξ̂ is evaluated
by swapping one of the K chosen sensors with one of the
M −K sensors not chosen, where

Ξ̂ =

(
M∑

m=1

ẑmg∗
mgT

m

)−1

. (18)

The computation of det Ξ̂ for the swapped sensor positions
can be reduced from O(L3) to O(L2) by using the low-
rank update formula for the determinant of the matrix. The
sensor selection ẑ is greedily updated if an increase in det Ξ̂

Algorithm 3 Sensor Placement Based on Mutual Information
Require: Covariance matrix Σ ∈ CM×M , number of sensors
K, set of candidates M (|M| =M )

Ensure: Sensor selection T ⊆ M
T = ∅
for k = 1 to K do

Select the sensor index m

m̂ = arg max
m∈M\T

σ2
m −Σm,T Σ

−1
T ,T ΣT ,m

σ2
m −Σm,T̄ Σ

−1
T̄ ,T̄ ΣT̄ ,m

Update the selected locations T

T = T ∪ m̂

end for

is encountered while attempting all possible K(M−K) swaps.
By limiting the number of steps of the local optimization to
M3/L2, its total computational cost is evaluated as O(M3),
which is the same as the cost for solving (17).

This algorithm can be extended to the broadband case by
solving the approximate problem formulated as

maximize
z

1

F

F∑
f=1

log det

(
M∑

m=1

zmg∗
m,fg

T
m,f

)

+ κ

M∑
m=1

(log (zm) + log (1− zm))

subject to 1Tz = K. (19)

This can also be solved by Newton’s method as in the
narrowband case. The computational cost for each iteration is
O(M3F ). The local optimization method may also be applied
after obtaining the approximate solution.

C. Sensor Placement Based on Mutual Information

Krause et al. [31] have proposed a sensor placement
method based on the maximization of the mutual informa-
tion between the selected and unselected locations. Since
this maximization problem is NP-hard, a greedy algorithm
exploiting the submodularity of mutual information is used
to find an approximate solution in polynomial time. At each
iteration, the sensor that provides the maximum increase in
the mutual information is selected and added to the list. More
specifically, m that maximizes the increase in the mutual
information from T to T ∪ {m}, which is represented as
JMI = MI(T ∪ {m}) −MI(T ), is chosen as the next sensor
m̂ (see Algorithm 3). By assuming a Gaussian process as the
probabilistic model for spatial phenomena, this increase in the
mutual information can be computed by

JMI = MI(T ∪ {m})−MI(T )

=
1

2
log

σ2
m −Σm,T Σ

−1
T ,T ΣT ,m

σ2
m −Σm,T̄ Σ

−1
T̄ ,T̄ ΣT̄ ,m

, (20)

where T̄ is M\(T ∪ {m}), Σ is the covariance matrix of
the sensor observations at the candidate locations, and σ2

m
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Algorithm 4 Sensor Placement Based on FrameSense
Require: A set of candidate sensor locations M, a transfer

function matrix G, and number of sensors K
Ensure: Sensor locations T ⊆ M

Set T = ∅
Find the first two rows to eliminate

U = arg min
m,m′∈M

|⟨gm,gm′⟩|2

Update the available locations

T = M\U

while |U| < |M| −K do
Find the optimal row

m̂ = arg min
m∈T

J(U ∪m)

Update the set of removed and available locations

U = U ∪ m̂ and T = T \m̂

end while

is the diagonal element of Σ for the mth sensor. Since the
logarithmic function is a monotonically increasing function,
JMI can be simplified to

JMI =
σ2
m −Σm,T Σ

−1
T ,T ΣT ,m

σ2
m −Σm,T̄ Σ

−1
T̄ ,T̄ ΣT̄ ,m

. (21)

The Gaussian kernel is used for modeling Σ in [31]; however,
the covariance matrix Σ calculated by the predicted transfer
function matrix can be used in this scenario.

The computational cost for calculating (21) is O(M3) for
each k and m because (21) includes the computation of the
inverse matrices of ΣT̄ ,T̄ ∈ C(M−k+1)×(M−k+1) and M is
much larger than k. The exhaustive search of m̂ requires M−
k+1 calculations of (21), i.e., O(M4), for each k. Then, the
total computational cost can be estimated as O(M4K), and
the memory requirement necessary to store covariance matrix
Σ is O(M2).

In the broadband case, by assuming statistical independence
of the spatial phenomena for frequency bins, the summation
of the increase in the mutual information (20) for the target
frequency bins can be used as

JMI =
1

2

F∑
f=1

log
σ2
m,f −Σm,T ,fΣ

−1
T ,T ,fΣT ,m,f

σ2
m,f −Σm,T̄ ,fΣ

−1
T̄ ,T̄ ,f

ΣT̄ ,m,f

. (22)

This algorithm requires the computation of the inverses of
ΣT ,T ,f and ΣT̄ ,T̄ ,f for each frequency at each k, which
results in a total computational cost of O(M4FK).

D. Source and Sensor Placement Based on FrameSense

FrameSense, a sensor placement method based on the min-
imization of the frame potential, was proposed by Ranieri et
al. [33]. It was later extended to the source placement prob-
lem [34]. It is based on the minimization of the frame potential
of a set of vectors from the candidate transfer function matrix.

Indeed, for a set of unit-norm vectors, the frame potential
is minimized by unit-norm tight frames [32], which also
minimize the mean square error of the estimation of the vector
coefficients over this frame. The frame potential of G is
defined as

FP(G) =
∑
m,m′

|⟨gm,gm′⟩|2 . (23)

The frame potential acts here as a proxy for the mean square
error of the estimation of the coefficients, as it can be used to
bound the mean square error, with a sharpness depending on
the norms of the rows of G and its spectral properties.

A greedy worst-out algorithm is proposed in [33] for the
sensor placement as in Algorithm 4. At each iteration, the
row of G that maximizes the increase in the frame potential,
i.e., JFP = FP(G) − FP(GM\U ), is removed, where U is
the set of locations that are not suitable for sensing. The
main contribution to the computational cost is the calculation
of the frame potential of G for various index sets; however,
the element-wise squared Gram matrix |(GHG)m,m′ |2 can be
calculated first and reused at each iteration, which requires
O(LM2) time and O(M2) memory.

Algorithm 4 can also be applied to the source placement
problem by evaluating the frame potential of the columns
of G [34]. However, the source and sensor positions must
be separately determined. The computational cost can be
estimated as O(ML2) in a similar manner to that in sensor
selection.

Although Algorithm 4 as such can only be applied to the
narrowband case, it can be extended to the broadband case by
evaluating the frame potential for all the frequency bins as

FP(G) =
∑
f

∑
m,m′

|⟨gm,f ,gm′,f ⟩|2 . (24)

Again, the greedy worst-out algorithm can be applied to
minimize (24). An algorithm for the source placement can
also be derived in a similar manner. The computational cost
can be estimated as O(LM2F ) and O(ML2F ) for sensor and
source selection, respectively.

E. Joint Source and Sensor Placement Based on Empirical
Interpolation Method

The authors of the present contribution have recently pro-
posed a joint source and sensor placement method based on
the empirical interpolation method (EIM) [35]. EIM was first
introduced in [75] in the context of numerical analysis of
partial differential equations by the reduced basis method [76].
EIM was presented as a general interpolation procedure in [77]
and applied to microphone array design in [24].

EIM jointly selects K interpolation functions and K sam-
pling points from candidates such that the linear system to
be solved for the interpolation remains stable when K grows.
By regarding the transfer functions of the secondary sources
and control points inside Ω as the interpolation functions and
sampling points to approximate a desired sound field inside
Ω, EIM can be applied to the source and sensor placement
problem.
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Algorithm 5 Joint Source and Sensor Placement Based on
EIM
Require: A set of candidate points L and M, transfer func-

tion matrix G ∈ CM×L, and target error tolerance ϵtol
Ensure: Source and sensor locations S ⊆ L and T ⊆ M,

and their required number K
Set k = 1, S = ∅, and T = ∅
while ϵ > ϵtol do

Select the secondary source index

lk = arg max
l∈L\S

∥GM,l − Ik−1[GT ,l]∥∞

and the corresponding index of the control point

mk = arg max
m∈M\T

∣∣Gm,lk − (Ik−1 [GT ,lk ])m
∣∣ .

Define the next basis function by

hk =
GM,lk − Ik−1[GT ,lk ]

Gmk,lk − (Ik−1[GT ,lk ])mk

Update the set of selected locations

S = S ∪ lk and T = T ∪mk

Define the error by

ϵ = max
l∈L

∥GM,l − Ik−1 [GT ,l]∥2 .

Set k = k + 1
end while

EIM is described in Algorithm 5; at each step, a new
source and a new control point are identified. At iteration
k, the new source is chosen as the one maximizing the ℓ∞-
norm between its transfer function GM,l and its interpolation
Ik−1[GT ,l] ∈ CM using a linear combination of the k − 1
previously identified sources, fitted on set T of k − 1 control
points. The point where this interpolation error is maximal is
added to set T . This procedure is iterated until the ℓ2-norm of
the error between each column of the transfer function matrix
and its interpolation becomes smaller than the predefined
target error tolerance ϵtol. It is also possible to stop the
iteration when k reaches a predefined number of sources and
sensors K.

An auxiliary basis {h1, . . . ,hK} of the space spanned
by the identified sources is built iteratively to compute the
interpolations, given by

Ik[GT ,l] =

k∑
j=1

cljhj , (25)

where the interpolation Ik[GT ,l] satisfies

(Ik[GT ,l])T = GT ,l. (26)

Therefore, the coefficients clj in (25) are obtained by solving

GT ,l = H
(k)
T cl (27)

for cl, i.e., the vectors of coefficients clj . By construction,
the matrix H

(k)
T is lower triangular, and its inversion can be
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Fig. 2. Experimental setting of the 2D simulations. The absorption ratio of
the room boundary for FEM is set at 0.50.

iteratively computed with a total cost of O(K3). The compu-
tational cost for each iteration is dominated by that of (25),
whose cost is O(kML). Therefore, the total computational
cost for the joint source and sensor selection can be estimated
as O(K2ML).

When sound field control is necessary over a broad fre-
quency band, the transfer function for the input of Algorithm 5
becomes a third-order tensor including the dimension of
frequency, i.e., G ∈ CM×L×F . Algorithm 5 can be applied
by evaluating the ℓ∞-norm for the matrix GM,l,F and vector
Gm,lk,F in the first and second lines, respectively. The total
computational cost becomes O(K2MLF ). Memory usage is
dominated by G.

IV. EXPERIMENTS

In this section, 2D numerical simulations are conducted for
the comparative evaluation of the five methods introduced in
Sect. III. A 2D trapezoidal room is assumed, which is depicted
by the bold line in Fig. 2. Acoustic simulations were performed
using FreeFem++ [78], a finite element method (FEM) solver.
The size of the elements for FEM is determined to be 0.1 times
the simulated wavelength. The specific acoustic impedance
ratio of each wall is set at 5.83 for all the frequencies and
corresponds to an absorption ratio of 0.50. Candidate loud-
speaker positions are set along the boundary of a rectangular
region of dimensions 2.4 m×2.8 m. The boundary is regularly
discretized into 256 candidate positions. The control region is
set as a rectangular region of dimensions 0.8 m × 1.0 m,
discretized with intervals of 0.04 m to construct candidate
control points. The regions of candidate loudspeakers and
control points are depicted by the dotted and dashed lines,
respectively, in Fig. 2.

The source placement method based on Gram–Schmidt
orthogonalization (Sect. III-A), the sensor placement methods
based on the determinant (Sect. III-B) and mutual information
(Sect. III-C), and the source and sensor placement methods
based on FrameSense (Sect. III-D) and EIM (Sect. III-E) are
denoted as GSO, Det, MI, FS, and EIM, respectively. We
also consider both regular and random placement methods,
which are denoted as Reg and Rand, respectively. In Reg, the
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Fig. 3. Number of sources and sensors K at each frequency obtained by
EIM with ϵtol = 1.0× 10−2 for narrowband case.

loudspeaker and control point positions are chosen from the
candidates on the rectangular boundaries so that the intervals
between elements are as equal as possible. In Rand, the
loudspeaker locations are drawn from the uniform measure
on ∂D, and the control points are drawn from the uniform
measure in Ω. The control points for GSO are regularly set
on the two-layer boundary of the control region to avoid the
forbidden frequency problem. The interval between these two
layers is 0.04 m. The loudspeaker placements in Det and MI
are the same as that in Reg.

To evaluate the control accuracy of each placement, we
define the signal-to-distortion ratio (SDR) as

SDR(ω) = 10 log10

∫
Ω
|udes(x, ω)|2 dx∫

Ω
|usyn(x, ω)− udes(x, ω)|2 dx

, (28)

where udes(·) and usyn(·) are the desired and synthesized
pressure fields, respectively. The desired sound field is a plane-
wave field and its arrival angle is varied from 0 to 359 deg
at 1 deg intervals. Then, SDRs for all the plane-wave angles
are averaged. We also evaluate the filter stability using the
condition number of GS,T as

κ(GS,T ) =
σmax(GS,T )

σmin(GS,T )
, (29)

where σmax(GS,T ) and σmin(GS,T ) denote the maximum
and minimum singular values of GS,T , respectively.

We first compare the reproduction performance of plane
waves in the narrowband case. A more realistic broadband
scenario is then considered.

A. Narrowband case

In the narrowband case, the numbers and locations of
the loudspeakers and control points are determined at each
frequency. The number of elements K is determined by EIM
with ϵtol = 1.0 × 10−2 since all the other methods require
K for the placement. The driving signals of the loudspeakers
are obtained using (7) without regularization to avoid the
determination problem of the regularization parameter and
make the sensitivity of the solution clearer.

Fig. 3 shows the number of loudspeakers and control points
K determined by EIM at each frequency. The SDR and
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Fig. 4. SDR with respect to frequency for evaluating control accuracy in
narrowband case.
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Fig. 5. Condition number with respect to frequency for evaluating filter
stability in narrowband case.

condition number with respect to the frequency are plotted
in Figs. 4 and 5, respectively. Although the SDRs of Reg are
high at low frequencies, they have many dips, e.g., at 400 Hz
and 660 Hz, owing to the forbidden frequency problem.
The placements of Rand are randomly determined at each
frequency; therefore, the SDRs of Rand greatly fluctuate and
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Fig. 6. Selected secondary source and sensor positions at 800 Hz in narrowband case. Black dots and crosses represent selected secondary sources and control
points, respectively. (a) Reg; (b) Rand; (c) GSO; (d) Det; (e) MI; (f) FS; (g) EIM.

are generally low. Compared with the SDRs of Reg and Rand,
those of GSO and FS are relatively high, but they still have
several dips. Generally high SDRs are achieved by Det, MI,
and EIM, and the SDRs of EIM are higher than those of Det
and MI. The condition numbers of Rand are extremely high
compared with those of the other methods. Those of FS are
also high at low frequencies. The lowest condition numbers
are achieved by Det and EIM.

As an example, the selected positions of loudspeakers and
control points at 800 Hz are shown in Fig. 6. In Det, MI, FS,
and EIM, relatively large numbers of control points are placed
on the boundary of the control region. This tendency is strong
for Det. Indeed, the sound field inside a closed region is de-
termined by the pressure on the boundary except at forbidden
frequencies. It can be considered that the control points inside
the control region have the effect of preventing nonuniqueness
at these frequencies. This effect was demonstrated in [79] for
a circular domain, where the stability of the reconstruction
with a number of measurements linear in the number of
parameters describing the sound field necessitates most of the
samples to be on the border and some samples to be inside
the domain. In this sense, the two layer placement of control
points used in GSO is not suitable because the number of
sampling points on the boundary becomes small. Furthermore,
closely located control points can lead to an excessively high

condition number. The synthesized pressure and normalized
error distributions of each method for the plane-wave arrival
angle of 219 deg are shown in Figs. 7 and 8, respectively. The
normalized error distribution is computed as

Err(x, ω) = 10 log10
|usyn(x, ω)− udes(x, ω)|2

|udes(x, ω)|2
. (30)

The frequency is close to the forbidden frequency of the target
region; therefore, the control accuracy inside the region is low
in Reg although that on the boundary is high. The region of
high control accuracy is relatively broad in EIM.

The boxplot of the output power of the driving signals at
800 Hz is shown in Fig. 9. The maximum whisker length is
set as 1.5 times the interquartile range. The red crosses denote
outliers. When the filter stability is low, the amplitude of the
loudspeakers can be very large and it can be impractical for
output using ordinary loudspeakers. Compared with the output
power of Reg, those of Rand, GSO, and FS are relatively
large. Those of Det and MI are almost the same as that of
Reg. A relatively small output power is achieved by EIM,
which corresponds to the low condition number of the transfer
function matrix.



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XX, NO. X, AUGUST 20XX 11

-0.5 0 0.5

x (m)

-0.5

0

0.5
y
 (

m
)

-1.5

-1

-0.5

0

0.5

1

1.5

(a)

-0.5 0 0.5

x (m)

-0.5

0

0.5

y
 (

m
)

-1.5

-1

-0.5

0

0.5

1

1.5

(b)

-0.5 0 0.5

x (m)

-0.5

0

0.5

y
 (

m
)

-1.5

-1

-0.5

0

0.5

1

1.5

(c)

-0.5 0 0.5

x (m)

-0.5

0

0.5

y
 (

m
)

-1.5

-1

-0.5

0

0.5

1

1.5

(d)

-0.5 0 0.5

x (m)

-0.5

0

0.5

y
 (

m
)

-1.5

-1

-0.5

0

0.5

1

1.5

(e)

-0.5 0 0.5

x (m)

-0.5

0

0.5

y
 (

m
)

-1.5

-1

-0.5

0

0.5

1

1.5

(f)

-0.5 0 0.5

x (m)

-0.5

0

0.5

y
 (

m
)

-1.5

-1

-0.5

0

0.5

1

1.5

(g)

Fig. 7. Synthesized pressure fields of plane wave from 219 deg at 800 Hz in narrowband case. (a) Reg; (b) Rand; (c) GSO; (d) Det; (e) MI; (f) FS; (g)
EIM.
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Fig. 8. Normalized error distributions at 800 Hz in narrowband case. (a) Reg; (b) Rand; (c) GSO; (d) Det; (e) MI; (f) FS; (g) EIM. SDRs are 21.8, 10.0,
43.9, 40.4, 35.4, 38.1, and 53.2 dB, respectively.

B. Further investigation of regular placement

Although the regular placement is simple and straight-
forward, from Fig. 4, it can be observed that Reg does
not perform as well as Det, MI, or EIM, particularly at
forbidden frequencies, e.g., at 660 Hz. The effect of forbidden
frequencies can be alleviated by placing several control points
inside the target region, and the general performance of Reg
can be improved. However, no obvious solution exists for
the choice of the number of internal control points and their
positions. In this section, different strategies for the placement
of additional internal points are explored in the regular case, in
order to investigate the individual effects of the internal points
and the overall placement of the control points.

Takane et al. [68] proposed several empirical strategies to
place internal control points, which is inspired by CHIEF
(combined Helmholtz integral equation formulation) points in
the boundary element method [80], [81]. In the 2D sound
field control, it is suggested to place three control points
around the border or six control points apart from the bor-
der of the target region so that the sound intensity at an
empirically chosen local position is controlled in addition to
the pressure distribution on the boundary. Sensor placement
methods introduced in Sect. III are also applicable to selecting
additional control points. We here evaluate the performance
of the method proposed by Takane et al. [68] (Reg+CHIEF)
and EIM for selecting control points in addition to the regular
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Fig. 9. Boxplot of output power of loudspeakers at 800 Hz in narrowband
case. The red crosses denote outliers. The excessively large output is consid-
ered to originate from the unstable inverse filter.

Fig. 10. Regular placement with six additional control points selected by
Reg+CHIEF and Reg+EIMi is evaluated in narrowband case. SDR is plotted
with respect to frequency. The gray area indicates approximate performance
bound obtained by the random sampling of six additional control points with
106 realizations.

placement on the boundary (Reg+EIMi). The reason for the
choice of EIM for selecting additional control points is its
good performance in the narrowband case. The number of
additional control points is set as Kint = 6 in accordance
with one of the suggestions in [68]. In both methods, K−Kint

control points are placed at regular intervals along the border.
As shown in Fig. 11(a), three pairs of control points are placed
around the center of the target region at intervals of 0.08 m
in Reg+CHIEF. The interval between a pair of control points
is 0.04 m. In Reg+EIMi, Kint control points are placed by
running EIM on the basis of the space of sound fields spanned
by the sources that have a value of 0 on the regularly placed
control points. To obtain approximate performance bounds for
the regular placement with additional control points, regular
placement on the border with random selections of Kint = 6
interior control points is tested and performed 106 times.

Fig. 10 shows the SDR with respect to the frequency of
Reg+CHIEF and Reg+EIMi with the performance range of
random sampling indicated by the gray area. The results
of Reg and EIM are also shown for reference. Although
several sharp dips of SDR are alleviated by Reg+CHIEF, the
general performance of this method is lower than those of the
other methods. The performance range of random sampling is
significantly broad; therefore, the performance of the regular
placement with additional control points highly depends on
the placement of additional points. The SDR of Reg+EIMi
is fairly close to the upper limit; therefore, Reg+EIMi is
a reasonable choice for the placement of additional control
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Fig. 11. Secondary source and sensor positions of Reg+CHIEF, Reg+EIMi,
and the best placement of the random sampling for six additional control
points at 800 Hz in narrowband case. Black dots and crosses represent
selected secondary sources and control points, respectively. (a) Reg+CHIEF;
(b) Reg+EIMi; (c) the best placement of random sampling of additional
control points.

Fig. 12. SDRs of Reg+EIMi using 2, 6, and 10 additional control points
are compared. The number shown in parentheses indicates the number of
additional control points for Reg+EIMi.

points. However, the performance of Reg+EIMi is still lower
than that of EIM in general. Note that the best placement of
random sampling with respect to SDR does not necessarily
indicate a low condition number. In Figs. 11(b) and (c), the
placement of Reg+EIMi and the best placement of random
sampling at 800 Hz are shown. It can be observed that, in both
cases, the six additional control points selected by EIM are not
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Fig. 13. SDRs of Reg+EIM and Reg+EIMi using 6 additional control points
are compared.

-2 0 2

x (m)

-3

-2

-1

0

1

2

3

4

y
 (

m
)

Fig. 14. Secondary source and sensor positions of Reg+EIM at 800 Hz in
narrowband case.

necessarily placed inside the target region, which implies that
the gap in performances between Reg and the other methods
is not only caused by the absence of interior points in Reg.

We also investigate the effect of the number of additional
control points. In Fig. 12, the SDR with respect to frequency
for Reg+EIMi at Kint = 2, 6, and 10 is plotted with the
performance range of random sampling at Kint = 6. The num-
ber shown in parentheses indicates the number of additional
control points. Reg+EIMi with two additional control points
still suffers from the problem of forbidden frequencies, e.g., at
660 Hz. The sharp decrease in control accuracy is prevented
by increasing the number of additional control points. The
difference between the results of placing six and ten additional
control points is small. Therefore, it is necessary to place a
sufficient number of additional control points. As shown in
Fig. 11(b), several control points can be placed at positions
on the boundary.

From the results in Figs. 10 and 12, it can be confirmed
that the performance of the regular control-point placement
on the boundary of the target region can be significantly
improved by placing additional control points by EIM. How-
ever, there is still a gap in the control accuracy between
Reg+EIMi and EIM. To investigate where this gap comes
from, we compare EIM, Reg+EIMi with six additional con-
trol points, and the regular loudspeaker placement with the
sensor placement by EIM from all the candidates inside the
target region (Reg+EIM). Note that as Kint approches K,
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Fig. 15. SDR with respect to frequency for the case that the sizes of the target
region and region of loudspeaker candidates are comparable. Det+EqAng and
MI+EqAng denote the equiangular placement of loudspeakers with its origin
at the center of the target region (EqAng) combined with the control-point
placement of Det and MI, respectively.

-0.5 0 0.5

x (m)

-0.6

-0.4

-0.2

0

0.2

0.4

y
 (

m
)

(a)

-0.5 0 0.5

x (m)

-0.6

-0.4

-0.2

0

0.2

0.4

y
 (

m
)

(b)

-0.5 0 0.5

x (m)

-0.6

-0.4

-0.2

0

0.2

0.4

y
 (

m
)

(c)

Fig. 16. Secondary source and sensor positions of Det, Det+EqAng, and
EIM at 800 Hz in narrowband case. Black dots and crosses represent
selected secondary sources and control points, respectively. The region of
the candidates is enlarged. (a) Det; (b) Det+EqAng; (c) EIM.

Reg+EIMi becomes similar to Reg+EIM. Fig. 13 shows the
SDRs of Reg, Reg+EIM, Reg+EIMi, and EIM with respect
to frequency. Again, the approximate performance bound for
the regular placement with Kint = 6 control points obtained
by random sampling is indicated by the gray area. It can
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Fig. 17. SDR with respect to frequency in broadband case. The frequency
range used in the source and/or sensor placement is indicated by red dashed
line. Results of Reg+EIM, MI, FS, and EIM for 500–1000 Hz are enlarged
in (c).

be observed that the SDR of Reg+EIM is generally higher
than that of Reg+EIMi, and even higher than the upper limit
of random sampling at several frequencies. Therefore, the
control accuracy can be improved by optimizing the control-
point placement on the border. The placement by Reg+EIM
is shown in Fig. 14. The control accuracy can be significantly
improved by jointly optimizing the placement of sources and
sensors by EIM.

An alternative to the placement of secondary sources at reg-
ular distances along the border is placement at regular angles
with respect to the center of the target region. These heuristics
are based on a far-field approximation, where the sound field
generated by a secondary source is similar to a plane wave.
The regular placement in angle (i.e., equiangular placement)
would minimize the maximal gap in the angle between a
plane wave from a given direction and the closest source.
Figs. 6(f) and (g) show that these heuristics are reasonable in
the geometry considered in this case, where the target region is
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Fig. 18. Condition number with respect to frequency in broadband case. The
frequency range used in the source and/or sensor placement is indicated by
red dashed line.

smaller than the region of loudspeaker candidates. Indeed, the
equiangular placement of the sources (EqAng) would yield a
similar configuration to those of FS and EIM. However, in
different geometries, performances of equiangular placement
are not always close to those of optimized placement of the
sources, or even of regular placement, especially when the
sizes of the target region and region of the loudspeaker candi-
dates are comparable. Fig. 15 is SDR with respect to frequency
when the target region has dimensions of 0.3 m × 0.9 m,
and the loudspeaker candidates are on the boundary of the
rectangular region with dimensions of 1.0 m × 1.0 m. The
target region and loudspeaker region share the same center.
EqAng combined with the control-point placement by Det
and MI (Det+EqAng and MI+EqAng) is compared with
Reg, Det, MI, and EIM. The regular loudspeaker placement
by Det and MI performs better than the equiangular loud-
speaker placement by Det+EqAng and MI+EqAng at many
frequencies. In addition, the jointly optimized placement of the
sources and control points (EIM) performs better than regular
and equiangular source placement with optimized control-
point placement. The positions of loudspeakers and control
points selected by Det, Det+EqAng, and EIM at 800 Hz
are shown in Fig. 16. Here, the region of the candidates is
enlarged.

Furthermore, in some practical situations, the target region
can be separated into multiple regions, i.e., multizone con-
trol [7], [82], [83], and the loudspeaker candidates cannot
fully enclose the target region, e.g., when loudspeakers cannot
be installed on several walls. In such cases, the optimal
loudspeaker placement can be complicated. Therefore, it is
difficult to find a simple strategy of placing loudspeakers
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without optimal placement methods.

C. Broadband case

In most practical applications, sound field control is needed
over a broad frequency band. We compare the seven placement
methods in the broadband case. The transfer functions from 20
to 1000 Hz at intervals of 20 Hz are used for the source and/or
sensor placement. The numbers of loudspeakers and control
points are both 35, as determined by EIM with ϵtol = 1.0 ×
10−2. The other experimental settings are the same as those in
the narrowband case. We here replace Reg with Reg+EIMi,
i.e., the regular placement with six additional control points
selected by EIM, to avoid the severe effect of the forbidden
frequency problem.

Figs. 17 and 18 show the SDRs and condition numbers
of the methods with respect to frequency, respectively. The
red dashed line indicates the frequency range used in the
source and/or sensor placement. The SDRs of Reg+EIMi,
MI, FS, and EIM are enlarged for frequencies of 500–
1000 Hz in Fig. 17(c). Since six additional control points are
placed in Reg+EIMi, large dips of the SDR are avoided. The
performance of Det significantly deteriorates in the broadband
case. Although the SDRs of Rand and GSO do not have
large dips, they are generally low. The general performance
of FS in the broadband case is improved compared with that
in the narrowband case. Relatively high SDRs are achieved
by Reg+EIMi, MI, FS, and EIM. The condition number is
very high at low frequencies in all the methods because of
high redundancy. Among them, Rand has an extremely high
condition number. The condition numbers of the other methods
are comparable, but those of GSO and Det are relatively high.

The selected positions of loudspeakers and control points
are shown in Fig. 19. Similarly to the narrowband case, in Det,
MI, FS, and EIM, relatively large numbers of control points
are placed on the boundary of the target region. The number
of control points in the interior target region in the broadband
case is increased in EIM and decreased in Det, MI, and FS
compared with that in the narrowband case. In Det, all the
control points are placed on the boundary. As an example, the
synthesized pressure and normalized error distributions for the
plane-wave arrival angle of 219 deg are plotted in Figs. 20 and
21, respectively.

In practice, the actual transfer functions between loudspeak-
ers and control points will be different from those measured
or predicted by the acoustic numerical simulation used for
source and/or sensor placement. To simulate this mismatch
of the transfer functions and evaluate the robustness against
it, we evaluate the control accuracy when the positions of
the loudspeakers and control points include some errors. At
the control stage, position errors are added, which are drawn
from a Gaussian distribution with a standard deviation of
0.01 m. The inverse filters are calculated with regularization
(8). The regularization parameter λ is chosen within the
interval [10−6, 10], discretized into 100 values on a logarithmic
scale, so that the highest SDR is achieved. The SDRs are
averaged for 10 realizations of position errors. The average
SDR with respect to frequency is plotted in Fig. 22. Again,

the red dashed line indicates the frequency range used in the
source and/or sensor placement. The results of Reg+EIMi,
MI, FS, and EIM are enlarged for frequencies of 500–1000 Hz
in Fig. 22(c). Several dips of the SDR appear in Reg+EIMi.
The SDRs of Rand, GSO, and Det are generally lower than
those of the other methods. The results of the other methods
are comparable, but the SDR of EIM is slightly higher than
those of the other methods, especially at frequencies above
600 Hz.

V. CONCLUSION

For ideal sound field control, the discretization of the
boundary integrals involved in the pressure matching method
based on the single-layer potential equation necessitates fine
discretization of the boundary of the domain, which, unfortu-
nately, often requires a high number of sources (loudspeak-
ers) and control points (microphones), and in practice one
must deal with limited hardware resources. The challenge
is to mitigate this reduction in the number of loudspeak-
ers/microphones while maintaining good fidelity. Since the
locations of both source and control points have a large
impact on the performance, these positions must be optimized
for specific environments and geometries. In this paper, we
described, in a unified fashion, five source and/or sensor
placement methods for sound field control and provided a
source code for reproducibility.

Two-dimensional numerical simulation results indicate that,
if internal control points are used, all the methods are able to
avoid the so-called forbidden frequency problem in the nar-
rowband case. The best performance was obtained by the joint
selection of the sources and control points with the empirical
interpolation method. The regular placement is simple, but
necessitates placing the control points inside the target region
in addition to the regular sensor placement on the boundary to
deal with instability problems at forbidden frequencies. Even
when instabilities are avoided, the reproduction performances
of regular placements of control points and loudspeakers
remain lower than those of optimized placements. Therefore,
optimizing source and sensor placements in accordance with
the specific geometry of the reproduction domain and the pos-
sible positions of the loudspeakers is surely a better strategy
than empirical methods. Although the performances of the
methods were comparable in the broadband case, the empirical
interpolation method exhibited good robustness with respect
to errors in the positions of loudspeakers and control points.
Still, ensuring robustness over a wide frequency range remains
a difficult problem that deserves further work. Regarding
computational complexity, measured as how the number of
operations and the memory requirements scale with the num-
ber of potential sources and control points, it can be noticed
that the Gram–Schmidt orthogonalization and the empirical
interpolation method scale linearly, whereas the other methods
all have higher complexities. In practice, picking up sources
and sensors one by one avoids the combinatorial search of the
global optimum for all sources and sensors simultaneously, and
all these methods can be run on standard workstations with a
reasonable number of potential sources and control points, at
least in the 2D case.
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Fig. 19. Selected secondary source and sensor positions in broadband case. Black dots and crosses represent selected secondary sources and control points,
respectively. (a) Reg+EIMi; (b) Rand; (c) GSO; (d) Det; (e) MI; (f) FS; (g) EIM.

Much work still remains to solve this problem in terms of
theoretical problem setting, efficient algorithms, and practical
engineering issues. On one hand, for sound field control, one
could, for instance, replace the 2D FEM software employed
here with specialized 3D acoustics simulation software that
can model complex geometries, different boundary conditions
(e.g., materials on the walls), and the directivity of sources.
However, even for candidate positions restricted within a 2D
plane, this would raise very challenging issues of computa-
tional complexity. On the other hand, it would be interesting to
transfer some of these methods to settings other than acoustics,
for instance, to temperature fields in chip design, to jointly
optimize the positions of heat sources/sinks and temperature
sensors.
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Fig. 20. Synthesized pressure fields of plane wave from 219 deg at 800 Hz in broadband case. (a) Reg+EIMi; (b) Rand; (c) GSO; (d) Det; (e) MI; (f) FS;
(g) EIM.
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Fig. 22. SDR with respect to frequency in broadband case when position
errors are added to secondary sources and control points using Gaussian
distribution with a standard deviation of 0.01 m. The frequency range used
in the source and/or sensor placement is indicated by red dashed line. Results
of Reg+EIMi, MI, FS, and EIM for 500–1000 Hz are enlarged in (c).
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