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91190, Gif-sur-Yvette, France
ORCID: 0000-0002-7627-5540

Gilles Chardon
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Abstract—Gradient-Boosted Decision Trees (GBDT) stand out
as a powerful Machine Learning tool in tackling classifica-
tion and regression tasks. Despite its effectiveness, GBDT, like
other ensemble methods, suffers from a lack of explainability.
Understanding these models’ inner workings is crucial for
comprehensively grasping their decision-making processes. In
this study, we propose a method to enhance the explainability
of GBDT, focusing on identifying specific training data points
termed ”comparable samples,” which play a pivotal role in the
model’s predictions. Inspired by the Frank-Wolfe algorithm, we
introduce Explainable Gradient Boosting (ExpGB), which aims to
shed light on the relationships between input data attributes and
model predictions. ExpGB operates by ranking training samples
based on their decomposition coefficients within the algorithm’s
output. Higher weights assigned to particular training samples
indicate a closer resemblance to the sample being analyzed. To
validate the efficiency of our approach, we conduct a comparative
analysis across three diverse datasets, contrasting ExpGB with
traditional GBDT algorithms. Through this analysis, we evaluate
the quality of estimation provided by ExpGB, thereby enhancing
our understanding of GBDT’s workings.

Index Terms—Multiclass classification, explainable machine
learning, gradient boosting

I. INTRODUCTION

Tree-based gradient boosting algorithms [1]–[3] are now
widely used in real-world applications due to their accuracy
performances and their relatively low computation cost. De-
spite their impressive performance, these algorithms share a
common drawback with other ensemble methods: a compro-
mise between performance and model explainability. Explain-
ability is of crucial importance as it builds user confidence in
the algorithms and helps understand model behaviour, which is
crucial when deploying models in real-world scenarios where
operational data might deviate from training and validation
sets. Several methods and tools have thus been developed in
the literature to enhance the explainability of machine learning
models. Of these, the most commonly used are probably SHAP
values [4], [5], LIME [6], and feature importance [7], [8]. All
three focus on the effect of features on the models’ predictions,
which is not necessarily relevant when the features do not

represent a physical aspect, for instance, when a principal
component analysis (PCA) is used on the data.

In this study, our main focus is to address classification
tasks through the use of gradient-boosting algorithms. Instead
of summarizing features, our method identifies and leverages
training data similar in features and response to a test instance.
This approach is particularly beneficial for non-expert users
and in scenarios where data instances, like images, can be
directly interpreted by humans, even though the underlying
features (in this context, pixels) may not be directly inter-
pretable.

The problem considered here is similar to the prototype
selection problem, which was extensively studied for classi-
fication problems [9]–[13]. These global methods allow for
determining representative data in each class to reduce the size
of the dataset. On the other hand, our method is local because
the chosen representative training samples will depend on the
sample of interest, and it provides a better representation of
the data set. Indeed, although several elements in the dataset
belong to the same class, they may have very different features,
which is why it is helpful to have a local method.

The main contribution of the paper is the introduction of a
variant of GBDT for classification problems using the Frank-
Wolfe algorithm, aiming at improving the explainability of
the results. To this end, the method extracts training samples
similar to a given test sample, both in terms of features and re-
sponse. The proposed classification algorithm aims to express
its prediction as a convex combination of the target values
of the training dataset, which corresponds to the probability
of belonging to each class. This selection of similar samples
facilitates a more intuitive explanation of predictions.

Empirical evaluations on real datasets show that the pro-
posed method achieves predictive performance on par with
the best state-of-the-art GBDT algorithms: CatBoost [14] and
XGBoost [15]. In addition, similar samples extracted using
this method are statistically evaluated on the same datasets to
show that they are very close to the considered sample both
in terms of features and response.



II. GRADIENT BOOSTING FRAMEWORK

In multiclass classification problems, one aims at learning
a function p(x) = (p1(x), . . . , pK(x)) mapping features
x ∈ Rd to the vector of the probability of belonging
to each class k - so that it minimizes the expected loss
L(F ) = E(L(y,p(x))) where L denotes a loss function,
E is the mathematical expectation, and K is the number of
classes. This function p is trained using N training samples
{(xn, κn)}, where κn is the class of xn, or equivalently
{(xn,yn)} where the class κn of xn is one-hot encoded in
yn, that is ynκn

= 1, and zero for the other coordinates of
yn. The empirical expectation of the loss

E =
1

N

N∑
n=1

L(yn,p(xn)) (1)

is minimized, where a usual choice for the loss L is the cross-
entropy loss, or logarithmic loss

L(p) = −
N∑

n=1

K∑
k=1

ynk log pk(xn). (2)

Usually, the problem is reparameterized using the symmetric
multiple logistic transform, with

Fk(x) = log pk(x)−
1

K

K∑
l=1

log pl(x). (3)

Using this transformation has the significant consequence that
the optimization problem is now unconstrained.

As the amount of available data is limited, the minimizers
of Eq. (1) are not guaranteed to yield accurate estimations of
p(x) for x not in the training dataset. Regularity assumptions
are needed in order to generalize the training data and avoid
overfitting.

Gradient tree boosting follows an approach where a
limited set of parameters describes the functions Fk.
More specifically Fk is restricted to belong to the set :{
F, F (x) =

∑T
t=1 γ

t
khθt

k
(x)

}
, where the hθt

k
are simple func-

tions parameterized by low-dimensional parameters θtk ∈ Θ,
where Θ is a low-dimensional parameter space, and the γt

k

are real weights. Here, the exponent ·t denotes the value at
the t-th iteration.

Gradient boosting is an iterative algorithm, which generates
a sequence of functions F t

k, inspired by gradient descent: at
each iteration t, an update hθt

k
is added in order to decrease

the empirical loss E . This update is selected so that its values
(hθt

k
(xn)) ∈ RN on the training points xn is the most parallel

with the opposite of the gradient −gt−1
k of E with respect to

the values of Fk at the training samples, which writes

−gt−1
kn = δk,κn

− pt−1
k (xn) (4)

where δ is the Kronecker symbol. The update hθt
k

is the
solution to the regression problem

θtk = argmin
θ∈Θ

∥ − gt−1
k − hθ∥22 (5)

A popular choice for hθt
k

is to use shallow regression trees
[16], θtk corresponding in this case to the splitting features,
splitting location, and terminal node values of the tree.

Such trees can be described by subsets {At
kl} covering the

space, and values btkl, with

hθt
k
=

L∑
l=1

btkl1At
kl

(6)

The number of subsets L depends on the depth of the trees.
Overfitting is avoided by limiting the complexity of each

hθt
k

(e.g. by constraining the depth of the regression trees), us-
ing a finite number of iterations, and dampening the iterations
by setting F t

k(x) = F t−1
k (x) + λγthθt

k
(x) with 0 < λ < 1.

Further regularizations can also be applied.
The cost of a prediction is the computational cost of

applying the weak learners hθt
k

to x.

III. GRADIENT BOOSTING WITH FRANK-WOLFE

In the gradient boosting algorithm recalled in the previous
section, the classifier consists of a linear combination of a
large number of weak learners, and the explanatory power
is lost in favour of prediction performance. We propose an
alternative formulation of the gradient boosting algorithm,
where the probabilities p are the variables to be optimized. To
account for the constraints on the probabilities (positivity and
summing to 1), we propose an algorithm inspired by the Frank-
Wolfe algorithm, which does not necessitate any projection
onto the probabilistic simplex. Additionally, we show that the
probabilities can be further expanded as linear combinations
of the probability values of the training data. This property
will be leveraged to assess the similarity between a data point
and the training samples.

A. The proposed algorithm

The standard Frank-Wolfe algorithm is given in Algorithm
1, for the minimization of a smooth function f in a compact
convex feasible set Ω. At each iteration, the gradient of the
objective function is computed, and the linear approximation
of the objective function at the current iterate xt is minimized
in the feasible set, at s. Then, the next iterate is found as a
convex combination of the current iterate xt and s. As Ω is
convex, the next iterate xt+1 is guaranteed to lie in the feasible
set.

In the proposed algorithm, as in gradient boosting, the
opposite of the gradient is replaced by a tree. Here, the
opposite of the gradient of the empirical loss with respect to
the values of pk at the training samples is

−gt−1
kn =

δk,κn

pt−1
k (xn)

(7)

As in the previous section, we notice that this vector is
nonnegative.



In contrast to the gradient boosting algorithm, we consider a
vector-valued decision tree h aiming at approximating jointly
the coordinates of the gradient:

hθt =

L∑
l=1

bt
l1At

l
(8)

Following the principles of the Frank-Wolfe algorithm, the
update s is found by maximizing the scalar product

⟨s,hθt⟩ =
∫
Rd

⟨s(x),hθt(x)⟩K q(x)dx (9)

where q is the density probability of x and ⟨·, ·⟩K is the
scalar product in RK . For a given x, the scalar product
⟨s(x),hθt(x)⟩K is maximized by setting sk⋆(x) = 1 for the
index k⋆ where hθt(x) is maximal, and zero elsewhere. Given
the expression of hθt as a piecewise constant function, the
optimal s is also a piecewise constant function, and

s =

L∑
l=1

ul1At
l

(10)

where the K dimensional vector ul is 1 on the maximal
coordinate of bl and zero elsewhere.

In addition to these projection-free iterations, the predictions
of the proposed algorithm can be, for each testing sample,
expanded as a convex combination of the training values.
Indeed, a given leaf where the value of the tree is maximal
at a given index k⋆, contains at least one training sample of
the class k⋆. This follows from the fact that bt

l being the
average of the vectors −gt−1

kn of the corresponding leaf, it is
itself nonnegative, and its maximal value is strictly positive.
Additionally, its value for a class k with no sample in the leaf
is zero. Note that we have excluded the case of an empty leaf,
which is avoided by the CART algorithm. The update can thus
be written as

ul =
1

N t
l

∑
n such that
xn∈At

l

κn=k⋆

yn (11)

where N t
l is the number of terms in the sum. By a trivial

induction, all iterates can be expanded as convex combinations
of the training values yn, with weights w = (wn)n=1...N for
the final prediction at iteration T .

Algorithm 1 Frank-Wolfe Algorithm
x0 ∈ Ω
for t = 1 to T do

Compute s := argmins∈Ω⟨s,∇f(xt)⟩
γ := 2

t+2

Update xt+1 = (1− γ)xt + γs
end for

Algorithm 2 ExpGB, fit
Require: {(xn, yn)}n=1,...,N , T,

initialization : p0k(x) =
1
N

∑N
n=1 ynk, n = 1 . . . N

for t = 1 to T do
Compute gt−1

kn , n = 1 . . . N
Fit a regression tree ht on the data {(xn,−gt

n)}, n =
1 . . . N with leaves At

l and values btl
Define s using Eqs. (10) and (11)
γ := 2

t+2

pt(x) = (1− γ)pt−1(x) + γs(x)
end for
return ht

k, t = 1 . . . T

B. Finding comparables

Once the prediction of a class for a testing sample z is
made, we propose to explain this prediction by inspecting the
training samples with the largest weights wn in the expansion
of p(z). Indeed, from Eq. (11), samples with high weights in
the expansion are likely

• to frequently fall in the same leaves as z, and thus share
characteristics relevant to the prediction,

• and to belong to the same class as z, as only the weights
of training samples belonging to the class where the
probability is increased at an iteration are increased.

The cost of the search of these comparable training samples is
virtually free, as it only involves only the weight vector w, and
a search of its maximal coefficients. The total cost is thus the
product of the number of iterations and the depth of the trees.
In contrast, a comparable search based on the computation of
an appropriate distance between z and the training samples
(e.g., KNN), would necessitate a cost proportional to the
product of the size of the training dataset and the dimension
of the features.

IV. RESULTS

To evaluate the performances of the proposed approach, we
will compare it to other gradient boosting methods - Catboost,
and XGBoost - on several public datasets with classification
tasks.

The first and foremost dataset we study in this article is
MNIST [17], composed of 28x28 pixel images depicting hand-
written digits ranging from 0 to 9, with 60000 training samples
and 10000 testing samples. The MNIST dataset is particularly
relevant for testing our method due to the intuitive concept
of similar samples it presents. Indeed, it is really easy to
recognize visually comparable digits. Two classification tasks
will be considered: standard classification of the digits, and
odd/even classification. No pre-processing or feature extraction
is applied before training or inference.

In the magic gamma telescope dataset [18], the goal is
to use measurements of high-energy gamma particles in an
atmospheric Cherenkov telescope to separate photons caused
by primary gammas from the images of hadronic showers



TABLE I
ACCURACY

Dataset Cat XGBoost ExpGB ExpGBlog
MNIST odd/even 0.986 0.987 0.960 0.978
MNIST number 0.973 0.976 0.9390 0.964
MagicTelescope 0.865 0.862 0.840 0.861
UjiIndoorLoc bldg. + floor 0.848 0.886 0.774 0.780
UjiIndoorLoc bldg. 0.998 0.987 0.967 0.982

initiated by cosmic rays in the upper atmosphere. The train-
ing dataset contains 10032 samples with 10 features, and
the testing dataset contains 3344 samples. This dataset was
selected to evaluate the performance of the models in a binary
classification task.

Finally, we consider the UjiIndoorLoc dataset [19], with an
indoor localization problem. The RSSI of Wifi access points
(WAPs) are measured in several places in three buildings, with
several mobile devices. We predict the floor and building of a
measurement using the RSSI levels of 520 WAPs. The training
data set contains 19937 samples, and the testing data set 1111
samples, obtained with a mobile device not used in the training
set. The coordinates of the localization are not used during the
training of the prediction but will be used to assess the similar
samples given by the proposed method.

A. Hyperparameter selection and Data Preprocessing

To optimize our models, we focused on two key parameters:
the number of iterations (set at 50, 100, 150, 200, 250, 300,
350, 400, 450, 500) and the depth of the trees (ranging from
5 to 10). We employed a grid search combined with a K-fold
cross-validation on the training data to select each model’s
hyperparameters, typically using K = 5. This involved di-
viding the training data into five parts, training the models in
four parts while evaluating their performance in the remaining
part. This cycle was repeated four times, ensuring each part
was used as a validation set exactly once. The choice of
hyperparameters was based on those that yielded the lowest
average cross-entropy across the five validation subsets.

B. Prediction performance

The prediction performance of ExpGB is compared with the
two reference models for each of the three datasets ExpGB is
also tested using the gradient in (4) when training the regres-
sion trees, denoted as ExpGBlog. Table I shows the accuracy
on each test set for the two reference models and ExpGB. As
expected, the two reference models perform similarly on all
datasets. ExpGB also exhibits similar performances, proving
that the modifications made to enhance explainability are not
done at the expense of decreased performance. The slightly
better variant ExgGBlog will be used in the remaining results.

C. Extracted prototypes at a glance

The main objective of our algorithm ExpGB was to enhance
the explainability of GBDT by extracting similar training
samples to a given tested sample. Here, we look at these pro-
totypes through examples extracted from the MNIST dataset.
In Figure 1, four criteria are tested to assess the similarity of

TABLE II
AVERAGE DISTANCE BETWEEN THE TESTED SAMPLE, AND MOST SIMILAR

TRAINING SAMPLES (WIFI DATASET) (METERS)

# samples ExpGB weights ExpGB counts CatBoost counts XGB counts
1 18.9 18.5 17.1 16.8
5 19.0 19.4 19.1 19.9
10 19.53 19.7 20.6 22.7
20 20.35 20.7 23.2 25.7

Rank

Fig. 1. Probability of a similar sample belonging to the class of the tested
sample, according to decreasing weights and counts for FW, and decreasing
counts for catboost

training samples to a given testing sample: by decomposition
weights of the ExpGB probability decomposition, by counting
the number of times a given training sample appears in
the decomposition, and by counting the number of leaves
containing both the testing sample and a training sample for
CatBoost and XGBoost. Figure 1 shows that the counting
method for ExpGB is able to extract a larger number of
training samples belonging to the same class as the testing
sample.

We also require that similar samples have more similarity
to a testing sample rather than belonging to the same class.
Figure 2 shows, for six testing samples, the five most similar
samples in terms of decreasing counts, and five random
training samples from the same class as the testing sample.
One sees that in addition to belonging to the same class, the
similar samples have similar shapes to the testing samples, the
most striking example being the angles of the 1’s.

Results for the odd/even classification are given in Figure 3.
Although the learning tasks are only concerned with the parity
of the digit, most of the extracted samples represent the same
digit as the testing sample. Digits different from the testing
sample, but from the same class, appear. They are still similar
to the testing sample (the 6s selected as similar to the 0 in
the first line is similar to its left neighbour, and the 7 in the
second line is similar to a 9 with a missing stroke).

For the UjiIndoorLoc dataset, the 5 most similar training
samples are given for 6 testing samples, two in each building,
on figure 4. In addition, the average distance between a tested
sample and its 1, 5, 10 or 20 most similar samples is given in
Table II, averaged over the testing dataset. As seen in Figure 1
on the MNIST dataset, ExpGB is capable of extracting more
relevant training samples than CatBoost and XGBoost.



Fig. 2. Comparable samples for the MNIST dataset. From left to right: testing
samples, training samples ordered by decreasing counts, random sampling
from the class
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Fig. 3. Comparable samples for the MNIST dataset, for odd/even task. From
left to right: testing samples, training samples ordered by decreasing counts,
random sampling from the class

V. CONCLUSION AND FUTURE WORKS

In this article, we proposed a variant of gradient-boosting
algorithms using Frank-Wolfe principles to enhance the ex-
plainability of such algorithms. More precisely, we have
developed a method that allows each of its predictions to be
written directly as a convex combination of the responses from
the training set while having the same level of performance
as the gradient boosting methods from the state-of-the-art. We
then showed that the algorithm can extract samples from the
training dataset similar to a testing sample, both in terms of
features and response. The tradeoff between performance and

Fig. 4. Wifi localization, map of the training locations, and six testing samples
with their five most similar testing samples.

explainability is not as clear-cut, suggesting that effectively
balancing these two critical aspects is possible.

These outcomes pave the path for future advancements.
Similar to traditional gradient boosting algorithms, perfor-
mance enhancements could be achieved by employing differ-
ent types of regressor trees, such as those based on histograms.
Furthermore, the introduction of native handling for missing
values and the management of categorical features could also
be explored.
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