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Sorbonne Université, CNRS, Institut Jean Le Rond d’Alembert, UMR 7190, F-75005 Paris, France

Abstract

Based on a theoretical analysis of the DAMAS algorithm, proposed by Brooks and Humphreys to locate and quantify acoustic
sources accurately, the paper proposes an efficient method to converge faster to the same solution by implementing standard proven
algorithms. We prove that when the DAMAS converges, its limit is a solution of the Covariance matrix Fitting method, and that
when the solution is unique, the DAMAS algorithm converges. We analyze the properties of the solutions to this optimization
problem to explain the ability of the DAMAS algorithm to recover sparse distributions of sources, even without a regularization
term. A fast implementation of the Covariance Matrix Fitting problem is also proposed. Several algorithms to solve this problem
are compared. From this review, it comes that the proposed method reduces drastically memory use and computational time thus
allowing to address large scale problems. An application to a large-scale 3D problem using experimental data demonstrates this
numerical efficiency, and simulations are used to assess the performances of source power estimation.

1. Introduction

Since its introduction by Brooks and Humphreys, the
DAMAS algorithm [1] has enjoyed a certain popularity (see,
e.g. [2–4]) in the acoustical imaging community for the decon-
volution of beamforming maps (DAMAS stands for Deconvo-
lution Approach for the Mapping of Acoustical Sources). In-
deed, it has been observed that when it converges, the DAMAS
algorithm yields accurate and useful power estimates [2, 3, 5].
Its development was based on the idea of the deconvolution
of the beamforming map under non-negativity constraints. Al-
though not based on firm theoretical foundations, the DAMAS
algorithm yields accurate estimations of the spatial extension
and powers of acoustical sources. In particular, the DAMAS al-
gorithm is efficient for the imaging of spatially sparse sources,
although it does not involve regularization penalties such as the
popular `1-norm.

Still, the DAMAS algorithm has the disadvantage of slow
convergence and large memory usage [3, 5]. Indeed, the algo-
rithm requires the computation and storage of a square matrix
of size the number of points in the discretization grid of the
space, which can grow quickly, in particular for 3D grids.
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Several methods, most of them numerically more efficient
than the DAMAS algorithm, have been proposed since 2006
(see [2] for a review of such methods), and are frequently com-
pared with it, one recurring remark being the computational ef-
fort that the DAMAS algorithm requires [3–12] . Among these
methods, several variants of the DAMAS algorithm with im-
proved numerical efficiency have been proposed, based on the
formulation of the problem in the Fourier domain [13], or prun-
ing of the grid points that will not be involved in the final source
map either directly [10, 11], or similarly in a wavelet basis [8].
In the former case, formulation in the Fourier domain is limited
to specific geometries, while in the latter, even after pruning,
the computational complexity remains too high for large scale
problems.

Despite the convincing results of the DAMAS algorithm and
its popularity, to our knowledge, no theoretical analysis ex-
plains its performances. This article is concerned with the
theoretical analysis of the DAMAS algorithm. As described
in [1], the DAMAS algorithm consists of a modified Gauss-
Seidel method, where iterates are thresholded to remain posi-
tive. In the case where it converges, the limit of the algorithm
is necessarily a fixed point of a thresholded Gauss-Seidel iter-
ation. Using this necessary condition, an alternative character-
ization of the fixed points is given, which can be interpreted
as the Karush-Kuhn-Tucker conditions for a non-negative con-
vex quadratic program. This convex problem is shown to be
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equivalent to a non-negative least-squares problem, and a least-
squares fit of a diagonal covariance matrix to the data. A
sufficient condition of uniqueness of the solution of these prob-
lems can be easily checked. In that case the DAMAS algorithm
is shown to converge towards this solution. Microphone self-
noise can be taken into account by removing the diagonal of the
spatial covariance matrix, or by explicitly estimating the noise
level at each element of the array.

Based on this new characterization of the fixed points (i.e.,
possible limit points) of the DAMAS algorithm, the use of sev-
eral optimization algorithms is considered, such as the interior
point algorithm [14], the Lawson-Hanson (LH) algorithm for
non-negative least-squares [15], and the coordinate descent al-
gorithm [16], of which DAMAS is a particular case. Appli-
cation to experimental data shows that faster convergence and
lower memory usage can be achieved using the Lawson-Hanson
algorithm, combined with a factorization of the matrix involved
in the objective function. As shown here with experimental
measurements, due to the reduced memory usage and compu-
tational time, the proposed method outperforms the DAMAS
algorithm and allows imaging with larger grids, such as a 3D
region. The performances of the proposed method are also an-
alyzed for the estimation of the sources powers using Monte-
Carlo numerical experiments.

This article is intended to be a self contained analysis of
the DAMAS algorithm. While comparison of DAMAS per-
formances with other methods is not its goal, similarities and
differences with methods from the literature will be discussed
when relevant. The code and data used to generate the numeri-
cal results and figures are available online [17].

The article is organized as follows: the DAMAS problem and
algorithm are recalled in section 2. In section 3, the characteri-
zation of the fixed points of the DAMAS algorithm as solutions
to convex optimization problems are derived, and convergence
of DAMAS is proven under condition of unicity of their solu-
tion. Optimization algorithms and implementation details are
considered in section 4. Application to experimental data is
demonstrated in section 5, and numerical results on the per-
formances of the method are given in section 6. Concluding
remarks are given in section 7.

2. Model and DAMAS algorithm

This section recalls the DAMAS problem and the algorithm
to solve it as it was originally proposed in [1]. Acoustic signals
are collected on an array of M microphones, and sources are
assumed to be located on a discrete grid of size N. Usually, the
distribution of sources is assumed to be sparse, that is, most of
the possible sources are inactive. Measurements are processed
in the frequency domain.

2.1. Model

Complex amplitudes of the measurements are taken at sev-
eral times t`. With s j` the complex-valued amplitude of the j-th

source at time t`, the measured signals are contained in the M-
elements vector x` that can be written as:

x` =

N∑
j=1

d js j` + e`, (1)

where d j is the Green’s function from the j-th source to the
microphones, e` is an additive noise, assumed white in time
and space and uncorrelated with the signals s j`.

Let C be the empirical estimate of the data covariance matrix
(or spatial covariance matrix, SCM) from L snapshots taken at
times t`:

C =
1
L

L∑
`=1

x`xH
` . (2)

Assuming that the signals s j` are independent in time and space,
for large L the sample covariance matrix C converges towards
the covariance matrix of the measurements

R =

N∑
j=1

p jd jdH
j + Σ (3)

where p j is the power of the j-th source and Σ is the noise co-
variance matrix, assumed to be diagonal. With D the M × N
matrix of columns d j and Q the covariance matrix of the sig-
nals s j (assumed to be diagonal with diagonal coefficients p j),
the covariance matrix R is decomposed as

R = DQDH + Σ. (4)

An estimation of the power value at each grid point can be
provided by beamforming: the vector b is a N-elements vector
containing the values of the beamforming map, with value at
index i given by:

bi = dH
i Cdi. (5)

Although its formulation is simple, limitations of beamforming
are well-known. In particular, closely spaced sources cannot be
resolved by beamforming.

Remark 1. When beamforming is directly used for source
power estimation, equation (5) is replaced by

b̃i =
1
‖di‖

4
2

dH
i Cdi. (6)

to obtain meaningful power values. Here, we use un-
normalized steering vectors, as the power levels will be ob-
tained after inversion of the beamformed field by solving the
DAMAS problem.

When the SNR is high, the noise covariance matrix Σ can be
neglected. Moreover, for high numbers of samples L, the sam-
ple covariance matrix C can be approximated by the covariance
matrix R, and the beamforming values are given as a function
of the source powers p j by

bi ≈

N∑
j=1

p j|dH
i d j|

2, (7)
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or equivalently as:
b ≈ Ap, (8)

where the coefficients of the N × N matrix A are given by

Ai j = |dH
i d j|

2. (9)

Given b and A, the DAMAS inverse problem aims at estimat-
ing the spatial distribution of sources p by inverting equation
(8).

Remark 2. The matrix A is positive semi-definite. Indeed, it
can be written as

A = (DHD) � (DHD), (10)

where � denotes the Hadamard (component-wise) product and
·̄ component-wise complex conjugation. Since DHD and its
conjugate are both Hermitian semi-positive, A is positive semi-
definite by the Schur product theorem [18]. Moreover, the rank
of A is bounded by the square of the rank of D [19]. As the di-
mension of D is M×N, the rank of A is bounded by min(M2,N).
In particular, A is singular when the size of the discretization
grid N is larger than the number of sensors squared M2.

2.2. The DAMAS algorithm

The DAMAS algorithm takes as input a beamforming map,
and returns an estimation of the sources power, assumed to be
located on a discrete grid.

In practice, the estimate C of the covariance matrix is af-
fected by measurement noise, which adds a diagonal matrix,
and statistical fluctuations. Moreover, the matrix A is most of
the time ill-conditioned, or even singular (see Remark 2), and
naive inversion of (8) does not yield viable results, e.g. negative
estimated powers.

Starting from the Gauss-Seidel method for solving linear sys-
tems, Brooks and Humphreys proposed the DAMAS algorithm
[1], which consists of the Gauss-Seidel algorithm, modified to
threshold the iterates to remain positive. The result is, in a sense
which was not made explicit, an approximate solution to (8)
with non-negative values.

The iterates pk are obtained by choosing a index ik, setting
pk

j = pk−1
j for j , ik, and

pk
ik = max

0, 1
Aik ik

bik −

ik−1∑
l=0

Aik l pk−1
l −

N∑
l=ik+1

Aik l pk−1
l


 . (11)

DAMAS was introduced and is usually used with cyclic up-
dates (that is, ik = k mod N). This version will be called cyclic
DAMAS in the remainder of the paper. Random DAMAS, where
the indices are chosen randomly, will be useful to obtain con-
vergence guarantees. ”DAMAS algorithm” will refer to both
versions. The algorithm is usually initialized with p0

i = 0 for
all i, and stopped when successive iterates are considered close
enough. We emphasize that here, an iteration corresponds to
the update of a unique coefficient, not to a full cycle.

In settings where the measurement noise cannot be neglected,
the technique of diagonal removal can be used, where the diag-
onal of C is set to zero, and the matrix A is replaced by Adr
with

Adr,i j = dH
i

(
d jdH

i − diag(d jdH
i )

)
dH

j (12)

where the operator diag(M) returns the diagonal matrix with
diagonal taken from M.

Remark 3. With the normalization of the steering vectors d j

used for the estimation of the powers with beamforming, the
matrix A is replaced by Ã with values Ãi j = Ai j/‖di‖

4
2, which

has values 1 on its diagonal. This formulation, used in the orig-
inal introduction of the DAMAS algorithm, has the disadvan-
tage that the matrix Ã is not symmetric semi-positive, and will
not be used for our analysis of the DAMAS algorithm. Indeed,
symmetry and positive semi-definiteness of A will be used in
the proof of Theorem 2. Additionally, while the DAMAS al-
gorithm considers thresholded Gauss-Seidel iterations, we note
that symmetry and positivity of a matrix ensure the convergence
of Gauss-Seidel iterations (see Theorem 11.2.2 in [20]). Never-
theless, for practical computations, the choice of A or Ã has no
influence on the result of the algorithm. Indeed, the divisions
by ‖di‖

4
2 in the definitions of b̃i and Ãi j cancel one another in

(11).

3. Fixed points of DAMAS

In the cases where the DAMAS algorithm converges towards
an estimate p of the power of the sources, this vector is neces-
sarily a fixed point, defined by the following:

Definition 1. A fixed point p? of the DAMAS algorithm is de-
fined by :

p?i = max

0, 1
Aii

bi −

i−1∑
l=0

Ail p?l −
N∑

l=i+1

Ail p?l


 . (13)

In this section, we will give characterizations of fixed points
of the DAMAS algorithm as solutions to three convex mini-
mization problems.

3.1. Quadratic reformulation

Our first step is the following result:

Proposition 1. A vector p? is a fixed point of the DAMAS algo-
rithm if and only if there exist auxiliary variables λi such that

p?i ≥ 0
p?i = 1

Aii

(
bi −

∑i−1
l=0 Ail p?l −

∑N
l=i+1 Ail p?l

)
+ λi

λi ≥ 0
λi p?i = 0

(14)

Proof. See Appendix A.1.

By interpreting this result as Karush-Kuhn-Tucker conditions
for a convex optimization problem, the following characteriza-
tion of a fixed point p? can be given:
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Theorem 1. A vector p? is a fixed point of the DAMAS algo-
rithm if and only if it is a solution to the optimization problem

argmin
p∈RN

+

J(p) (15)

where
J(p) =

1
2

pT Ap − bT p (16)

Moreover, if A? (defined as the principal submatrix of A for
the coordinates where the gradient ∇J(p?) = Ap? − b is zero)
is positive definite, then p? is unique.

Proof. See Appendix A.2

Remark 4. In the case where A is non-singular, the uncon-
strained global minimum of J is A−1b.

Fixed points can thus be found as minimizers of a constrained
quadratic optimization problem. As will be shown, this prob-
lem can be solved by standard algorithms.

3.2. Covariance matrix fitting problem
The optimization problem (15) can be reformulated in a more

meaningful way.

Theorem 2. Let P? be a solution to the problem

argmin
P∈DN

+

‖DPDH − C‖2F (17)

where DN
+ is the set of N × N diagonal matrices with non-

negative coefficients, ‖ · ‖F is the Frobenius norm, and D is the
matrix with columns di.

Then P? is a solution of (17) if and only if its diagonal coef-
ficients p? are solutions of problem (15).

Proof. See Appendix A.3.

In this formulation, the covariance matrix of the array mea-
surements is directly taken as the input of the problem, and the
beamforming step is unnecessary. This result unifies two differ-
ent approaches for source localization, namely

• the DAMAS approach, where a beamforming map is first
computed, and deconvolution (or, more generally inver-
sion) of this beamforming map is achieved to yield source
power estimations,

• the Covariance Matrix Fitting (CMF) approach, where es-
timated source powers are obtained by fitting source pow-
ers to the covariance matrix of the measurements, as intro-
duced by Yardibi et al.[9].

A similar equivalence was proven in [21], where the authors
show that, in an ideal setting where the spatial covariance ma-
trix is perfectly known in an open, continuous domain, the infi-
nite dimensional equations to be solved to match the unknown
source power distribution to the beamforming map, or to the
spatial covariance matrix, are equivalent. This result does not
apply in practice, where measurements are noisy and discrete,

covariances are estimated, and the problems are frequently ill-
conditioned. In this case, Theorems 1 and 2 show that estimat-
ing the distribution of sources from the beamforming map with
the DAMAS algorithm, or from the covariance matrix using an
algorithm to solve problem (17), is equivalent. We note that this
equivalence is specific to the DAMAS algorithm and problem
(17), and is not true for any pair of beamforming deconvolution
method and covariance matrix fitting method.

3.3. Non-negative least-squares

The fixed points of the DAMAS algorithm are solutions to a
third optimization problem, important for practical purposes.

Theorem 3. Problems (15) and (17) are equivalent to the fol-
lowing non-negative least-squares problem

argmin
p∈RN

+

‖D̃p − c‖22. (18)

where D̃ is a M2 × N matrix, with columns given by the vec-
torization of the matrices didH

i , and c is a vectorized version of
C.

Proof. See Appendix A.4.

Characterizing the power maps obtained by the DAMAS al-
gorithm as solutions to a non-negative least-squares (NNLS)
problem explains the fact that DAMAS yields sparse solutions,
even if no sparsity prior is explicitly imposed on the solutions.
Indeed, it is known that the NNLS problem behaves similarly to
non-negative LASSO, i.e. yields sparse solutions (even without
regularization) [22, 23].

As problem (17) is a non-negative least-squares fit of the spa-
tial covariance matrix, and (18) a non-negative least-squares
problem, the proposed method consisting of solving one of the
equivalent problems (15), (17) or (18), will be called CMF-
NNLS.

Remark 5. We emphasize that problem (18) is different to the
DAMAS-NNLS problem

argmin
p∈RN

+

‖Ap − b‖22 (19)

introduced in [24], or equivalently

argmin
p∈RN

+

1
2

pT A2p − bT Ap, (20)

which takes the beamforming map as input.

3.4. Convergence of the DAMAS algorithm

Finally, we conclude our theoretical analysis by a proof of
convergence of the random DAMAS algorithm.

Theorem 4. Let pk be the iterates of the random DAMAS algo-
rithm. Then for ε > 0 and 0 < ρ < 1, and

k ≥
C1

ε

(
1 − log ρ

)
+ C2 (21)
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where C1 and C2 are independent of k, ε and ρ, the probability
that J(pk) − J(p?) ≤ ε is larger that 1 − ρ.

Moreover, under the condition of uniqueness of theorem 1
and with same probability,

‖pk − p?‖2 ≤ C3ε + C4
√
ε (22)

with C3 and C4 independent of k, ε and ρ.

Proof. See Appendix A.5.

3.5. Diagonal terms

When diagonal terms in C generated by uncorrelated mea-
surement noises at each microphone cannot be neglected, di-
agonal removal can be applied to problem (17) by neglecting
diagonal terms in the computation of the Frobenius norm. This
problem is still convex, and its Hessian matrix is Adr defined in
(12), which is as such semi-definite positive.

Equivalently, the diagonal can be accounted for by consider-
ing the modified problem

argmin
P∈DN

+ ,S∈DM
+

‖DPDH + S − C‖2F . (23)

where the diagonal of S is formed by the estimated variances of
the noise at each sensor. This problem can be reformulated as a
special case of problem (17):

argmin
P̄∈DN+M

+

‖D̄P̄D̄H − C‖2F . (24)

where D̄ is the concatenation of D and the M × M identity ma-
trix, and the diagonal of P̄ is the concatenation of the powers of
the sources and the powers of the noise at each sensor.

4. Optimization algorithms and numerical implementation

The above results are not only useful to characterize and ex-
plain the properties of the power maps obtained by the DAMAS
algorithm. As the fixed points of the DAMAS algorithm are
shown to be solutions to standard optimization problems, the
vast literature on convex optimization can be invoked for faster
computations.

In addition to the cyclic and random DAMAS algorithms,
we consider three algorithms to solve the CMF-NNLS problem
(17). Each of these algorithms is based on one of the equivalent
formulations (15), (17) and (18), and under the condition of
unicity of Theorem 1, converges towards the same solution. A
summary of the algorithms is given in Table 1.

Cyclic and random DAMAS algorithms. Coordinate descent
with cyclic or random choice of the updated coordinate by
equation (11). Cyclic DAMAS is the original DAMAS algo-
rithm [1]. For the numerical results, the algorithm is imple-
mented as a Matlab mex-file. This algorithm requires the ex-
plicit knowledge of all coefficients of the N × N matrix A, and
takes as input the beamforming map b.

Interior point algorithm, quadratic programming. Theorem 1
shows that fixed points are solutions to the problem (15), a stan-
dard constrained convex quadratic program for which several
algorithms exist. In our numerical experiments, we used the
MATLAB R2019b functions quadprog (with the interior point
algorithm and default parameters), which takes as input the ma-
trix A and the beamforming map b.

Lawson-Hanson algorithm. By Theorem 3, fixed points of
the DAMAS algorithm are also solutions to problem (18),
non-negative least-squares, a particular case of a constrained
quadratic problem. This problem can be solved with the
Lawson-Hanson algorithm [15], given in Appendix B. In this
simple formulation, the algorithm takes as input the matrix D̃
and the SCM C as the vector c. We used here the MATLAB
R2019b implementation (lsqnonneg) of the Lawson-Hanson
algorithm.

Optimized Lawson-Hanson algorithm. Finally, by using the
formulation (17) given by Theorem 2 and the structure of A
given by eq. (10), a faster implementation of the Lawson-
Hanson algorithm can be obtained. Details are given in Ap-
pendix B.

The improvement in time and memory obtained by using the
structure of the problem can be seen by considering the storage
cost of A, and the computational complexity of a product of A
with a vector. Although A does not appear explicitly in prob-
lems (17) and (18), it is involved in the computations of the
Lawson-Hanson algorithm, and dominates its numerical com-
plexity. Orders of magnitudes given in table 2 show that using
the structure of A (see eq. (10)) offers a substantial improve-
ment in both memory and time, as the storage space and com-
putational complexity are linear with respect to the size of the
discretization N instead of quadratic.

This approach is similar to the use of a Fast Fourier
Transform algorithm instead of the explicit Discrete Fourier
Transform matrix, with computational complexity reduced to
O(N log N) from O(N2), and is not specific to the LH algorithm.
However, algorithms that need explicit knowledge of the coef-
ficients of A (e.g., the DAMAS algorithm), cannot profit from
this factorization.

The cost of a DAMAS iteration (i.e. update of one coeffi-
cient) is also given, using the explicit knowledge of A if mem-
ory is sufficient to hold the entire matrix (O(M)), and by recom-
puting necessary values of A from D when needed for lower
memory usage (O(NM)).

In addition, the Lawson-Hanson algorithm will also be used
to solve the DAMAS-NNLS problem (20), using the same op-
timization for the product by A.

5. Experimental results

The methods are tested experimentally upon signals recorded
in an anechoic chamber. The setup of the experiments is iden-
tical to the experiments described in [25].
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Name Implementation 2D 3D
Cyclic DAMAS mex 682s -

Random DAMAS mex 277s -
Interior point quadprog 153s -

Lawson-Hanson Alg. 1, lsqnonneg 10.6s -
Lawson-Hanson Alg. 1 using (10) 1.5s 7min

DAMAS-NNLS, LH Alg. 1 using (10) 8.1s 47min

Table 1: Optimization algorithms. The first five algorithms solve the equiva-
lent CMF-NNLS problems (15), (17) and (18). The last algorithm solves the
DAMAS-NNLS problem (19). Algorithm 1 is given in Appendix B

Memory Product, LH iteration DAMAS iteration
Naive O(N2) O(N2) O(N)

Optimized O(NM) O(NM2) O(NM)

Table 2: Storage cost and matrix-vector product time complexity for the matrix
A with and without using the structure given by eq. (10). In large scale applica-
tions, the size of the grid N is larger than the number of microphones squared
M2.

Sources built out of baffled broadband omnidirectional loud-
speakers (Visaton-BF32 - [150Hz-20kHz]) are used. The im-
plemented acoustic array uses MEMS digital microphones (In-
vensense - INMP441) with a 26 dBFS sensitivity (1kHz, 94dB-
SPL) and a flat response in the band [150 Hz - 15 kHz].

The antenna counts 128 elements distributed along 16 linear
rays. On each ray, the 8 microphones are spaced regularly at
17cm intervals, the distance between the first microphone and
the center of the array follows a pseudo-random distribution.

The microphone array and the sources are pictured on fig. 1
and 2-(a). They are located in two parallel planes, at a distance
d = 4.4m.

The microphone signals are sampled at Fs = 50 kHz and an-
alyzed by Short-Term Fourier Transform, with a 2048 samples
Hann window (41ms duration and 75% overlap).

Data are processed using Matlab 2019b on a personal laptop
equipped with an Intel Core i7-7820HQ @ 2.90GHz × 8 CPU
and 16 GB memory.

5.1. 2D inversion, comparison of the algorithms

We first compare the algorithms in a medium-dimensional
case, at frequency F = 1806Hz. The search space is discretized
using a N = 180 × 60 = 10800 grid of size 3m×1m at a dis-
tance of 4.4m to the microphone array. Here, only the M = 64
central microphones are used. This choice was made to lower
the intrinsic resolution of the array and match the performances
of ”off the shelf” commercial systems. The output of the beam-
former is given on figure 2-(b). The sources cannot be resolved
by beamforming.

The two versions of DAMAS (cyclic and random), the two
version of the Lawson-Hanson algorithm (naive and optimized)
and the interior-point algorithm are tested. The LH algorithm
converges in a finite number of iterations with a positive definite
matrix A?, thus providing the exact unique minimizer p? of
(15). DAMAS and the interior point algorithm are run until the

Figure 1: Microphone array. Microphones represented by lighter dots were not
used in the 2D experiments.

relative gap

δk =
‖D̃pk − c‖22 − ‖D̃p? − c‖22

‖D̃p? − c‖22
(25)

reaches 10−4. Running times are reported in Table 1.
The results of the random DAMAS algorithm are given on

figure 2-(c) (cyclic DAMAS yields similar results). At the cho-
sen stopping criterion, DAMAS cannot fully separate the two
closely spaced source. Results of the CMF-NNLS method with
the Lawson-Hanson algorithm are given on figure 2-(d) (both
versions yield identical results, and quadprog yields similar
results). The four sources are clearly separated. The difference
in performances are entirely caused by stopping the DAMAS
algorithm. Indeed, at least for random DAMAS, Theorem 4
shows that running the algorithm for a sufficiently large num-
ber of iterations would yield results arbitrarily close to the ac-
tual minimizer p?, with probability as close to one as needed.

The five algorithms are compared by plotting δk in function
of the computational time on figure 3, with varying number of
iterations. The gap in computational speed between the two
versions of the LH algorithm is entirely explained by the use
of the factorization (10). Decrease of the objective function for
DAMAS is consistent with Theorem 4.

Results of the DAMAS-NNLS method are similar but
slightly different to CMF-NNLS (figure 2-(e)), which is ex-
pected as they consider different optimization problems. The
longer running time is expected as the objective function of the
DAMAS-NNLS and its gradient involves more products by A
than that of CMF-NNLS.

In the remainder of the article, the optimized Lawson-
Hanson algorithm will be used to solve the CMF-NNLS prob-
lem.
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Figure 2: 2D experiment, F = 1806 Hz. Comparison of (a) actual powers of
the sources, (b) beamforming, (c) DAMAS, (d) CMF-NNLS, and (e) DAMAS-
NNLS . Powers in dB. Actual positions are indicated by crosses in (b), circles
in (c) (d) and (e). Numbers indicate the power summed in the circles of radius
0.05cm around the true locations of the sources.

Figure 3: Decay of the gap (25) with respect to computational time. The num-
ber of iterations is indicated with labels.
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Figure 4: 3D experiment, F = 4858 Hz. Front (left) and top (right) view.
(a) Positions and powers of the sources. Results of (b) CMF-NNLS and (c)
DAMAS-NNLS. Estimated powers and positions of the sources are indicated
by discs with radius proportional to the power, actual positions by crosses. Indi-
cated powers in dB are obtained by summing the estimated powers in a sphere
of radius R = 0.08m around the actual position of the sources.

5.2. 3D problem, large scale inversion

The numerical efficiency of the optimized Lawson-Hanson
algorithm for solving the CMF-NNLS problem allows appli-
cation to large scale problems. Here, the search space is ex-
tended to a 3D region of size 3m×1m×1m, discretized over
N = 150 × 50 × 50 = 3.75 × 105 points (to our best knowledge,
the size of this problem is 30 times the size of the largest prob-
lem previously considered with DAMAS in the literature [3]).
Positions and powers of the sources are given on Figure 4-(a).
All M = 128 microphones are used, and F = 4858 Hz. Results
of CMF-NNLS are given on Figure 4-(b). Computation time for
this result is approximately 7 min. The four sources are easily
identifiable and they are located in the same plane, in coherence
with the experimental setup where the sources were located in a
plane parallel to the array. Low power spurious sources appear
on the boundary of the domain, likely because of a mismatch
between the model and the experimental conditions (wave ve-
locity, reflections on the equipment, etc.). DAMAS-NNLS con-
verges in 47 min, with similar powers and less spurious sources
(Figure 4-(c)).

The DAMAS algorithm, and more generally algorithms that
need explicit knowledge of the coefficients of A, cannot be ap-
plied in this case with the equipment used here. Indeed, the size
of the matrix A scales as O(N2), which here would necessitates
prohibitive memory space (here, approximately 1 TB as double
floats). Alternatively, the structure of A can be used to decrease
the memory requirements, but at a cost of a computational com-
plexity multiplied by M (see Table 2), which prevents to obtain
usable results in a reasonable time .

6. Performance analysis

Simulations are now used to assess the performances of the
original DAMAS algorithm, CMF-NNLS and DAMAS-NNLS
formulation of the problem with the optimized LH algorithm.
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Three sources with powers p1 = 83.0dB and p2 =

89.0dB and p3 = 76.0dB at coordinates (0.60, 0.50, 4.4),
(0.67, 0.67, 4.4) and (0.25, 0.45, 4.4) respectively are simulated
in a similar setting as in the 2D experiments, at F = 4858 Hz.
The region of interest has dimensions 1m×1m, discretized over
a grid of N = 100 × 100 = 104 points. Measurements at the
sensors are noisy, with a signal to noise ratio of 7.83 dB for the
first 32 sensors and 1.83 dB for the last 32 sensors, with a global
SNR of 3.88dB. 500 snapshots are used to compute the sample
covariance matrix of the measurements.

Source power maps obtained by beamforming, DAMAS,
CMF-NNLS and DAMAS-NNLS are pictured in figure 5. 107

DAMAS iterations are used, with an average computation time
of 143s. Average computation times are 1.29s for CMF-NNLS
and 5.1s for DAMAS-NNLS. All methods use diagonal re-
moval.

The wavelength is too large to allow beamforming to sep-
arate the sources. Power maps obtained by CMF-NNLS and
DAMAS-NNLS are sparser than the power maps returned by
DAMAS.

200 realizations of the numerical experiments are used to as-
sess the performances of the three methods. As in [5], values of
the powers of the sources are taken by summing the estimated
powers around the actual position of the source, here on the
position of the source and its eight neighbouring nodes. His-
tograms of the estimation errors of the powers of the 3 sources
(∆1, ∆2 and ∆3, Specific level error in [5], computed as the dif-
ference between the actual and estimated powers, both in dB)
are given for the four methods. In addition, histograms of the
negative sum of the estimated powers outside of the neighbor-
hood of the three sources (∆0, Inverse level error in [5], in dB)
are given.

Comparing DAMAS and CMF-NNLS, DAMAS powers are
underestimated. This bias is caused by the spread of the sources
at 107 DAMAS iterations compared to the result of the Lawson-
Hanson algorithm, which is the actual solution of the CMF-
NNLS problem. DAMAS-NNLS yields slightly better results
than CMF-NNLS, at a cost of a higher computational time.

7. Conclusion

Since its introduction in 2006, the DAMAS algorithm has
been largely used in complement to the classical beamform-
ing technique to identify the accurate location and power of
acoustic sources. However this robust method essentially based
on empirical considerations, implements basic numerical pro-
cesses and therefore suffers from a high demand in memory
space and computational time which prevents to solve large
scale problems. In this work, we investigated the theoretical
foundations of the DAMAS algorithm.

We have shown that fixed points (i.e. possible limits) of the
DAMAS algorithm are solutions to a non-negative least-squares
problem, or, alternatively, least-squares fit of a diagonal covari-
ance matrix to the data. We also have shown that the beam-
forming step, starting point of DAMAS is redundant and can
be avoided. Additionnaly, it was shown that under a condition
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Figure 5: 2D simulations, f = 4858 Hz. Results of (a) beamforming, (b)
DAMAS algorithm, (c) CMF-NNLS, (d) DAMAS-NNLS. Powers in dB.
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that can be checked at convergence, the solution of the non-
negative least squares problem is unique, and in that case, that
the DAMAS algorithm converges towards this solution.

To reduce the computation complexity, it was shown that the
specific structure of the beamforming kernel A could be used
to accelerate matrix-vector products involved in the Lawson-
Hanson algorithm. This approach allows to use wide spread
algorithms dedicated to the resolution of classical optimization
problems and far more efficient than the standard iterative de-
convolution process. This improved efficiency allowing appli-
cations to large-scale problems has been implemented to pro-
cess experimental data and successfully locate four sources in a
3D region. In complement, a numerical study was led to inves-
tigate the ability of this approach to provide an accurate mea-
surement of the power of the sources.

The gain in computational efficiency were obtained under the
assumption that the size of the discretization of the space was
larger than the size of the spatial covariance matrix. The case
of larger microphone arrays will likely necessitates specific nu-
merical methods.

Appendix A. Proofs

Appendix A.1. Proof of Proposition 1

We first prove that (13) ⇒ (14). We first consider the case
where p?i > 0. Then by setting λi = 0, the four equa-
tions of (14) are satisfied. In the case p?i = 0, we set λi =

− 1
Aii

(
bi −

∑i−1
l=0 Ail p?l −

∑N
l=i+1 Ail p?l

)
≥ 0.

To prove that (14) ⇒ (13), we proceed similarly. If λi = 0,
then (13) is true for p?i . Alternatively, if λi > 0, then p?i = 0
and 1

Aii

(
bi −

∑i−1
l=0 Ail p?l −

∑N
l=i+1 Ail p?l

)
< 0 which implies (13)

for p?i .

Appendix A.2. Proof of Theorem 1

As J is a convex function (A is semi-definite positive) and
RN

+ a convex domain, global minima of the optimization prob-
lem (15) are characterized by the Karush-Kuhn-Tucker (KKT)
conditions [14], which here write:

∇J(p?) − µ = 0
p?i ≥ 0
µi ≥ 0

µi p?i = 0

(A.1)

where µ = (µ1, . . . , µn) is a vector of KKT multipliers.
Expliciting the first equation using ∇J(p) = Ap − b, we get

N∑
l=1

Ail p?l − bi − µi = 0 (A.2)

or, equivalently,

p?i =
1

Aii

bi −

i−1∑
l=0

Ail p?l −
N∑

l=i+1

Ail p?l

 +
µi

Aii
(A.3)

Identifying µi/Aii as λi, the KKT conditions (A.1) are equiva-
lent to the characterization (14) of fixed points of the DAMAS
algorithm.

We now give a sufficient condition for uniqueness of p?. We
denote S the set of coordinates where µ is zero, and the restric-
tion of a vector x to this set xS , and likewise for its comple-
ment S̄ , assumed nonempty. We have p?

S̄
= 0, µS̄ ≥ 0 and

∇J(p?) = µ from the KKT conditions. As J is a quadratic func-
tion, for any p and h,

J(p + h) − J(p) = 〈∇J(p),h〉 +
1
2

hHAh. (A.4)

With h such that p? + h is feasible (which implies that hS̄ ≥ 0),

J(p? + h) − J(p?) =
〈
µS̄ ,hS̄

〉
+ 〈µS ,hS 〉 +

1
2

hHAh (A.5)

In the right hand side of (A.5), the first term is nonnegative,
the second zero, and the third nonnegative (stemming from the
semi-definite positivity of A).

We then have the two inequalities

J(p? + h) − J(p?) ≥
〈
µS̄ ,hS̄

〉
≥ min

i∈S̄
µi‖hS̄ ‖1 (A.6)

J(p? + h) − J(p?) ≥
1
2

hHAh. (A.7)

If p? + h is a minimizer, the left hand side of the above equa-
tions is zero, implying ‖hS̄ ‖1 = 0 and hS̄ = 0. Combining with
(A.7) yields 0 = 1

2 hHAh = 1
2 hH

S A?hS . If A? is positive definite,
this implies hS = 0. Combining with hS̄ = 0 implies h = 0 and
unicity of the minimizer. The same reasoning can be applied
when S̄ is empty and A? = A.

Appendix A.3. Proof of Theorem 2
Since P is diagonal, we first observe that with pi the diagonal

coefficients of P, DPDH =
∑

i pididH
i . Then,

‖DPDH − C‖2F = tr
(
(DPDH − C)H(DPDH − C)

)
(A.8)

= tr


 N∑

i=1

pididH
i − C

H  N∑
j=1

p jd jddH
j − C




(A.9)

=

N∑
i=1

N∑
j=1

pi p j tr(didH
i d jdH

j )

− 2
N∑

i=1

pi tr(didH
i C) + tr(C2) (A.10)

=

N∑
i=1

N∑
j=1

pi p j|dH
i d j|

2 − 2
N∑

i=1

pidH
i Cdi + tr(C2)

(A.11)

= 2J(p) + tr(C2). (A.12)

As the objective functions of (15) and (17) are related by an
affine transformation with a strictly positive multiplicative co-
efficient, they share the same minimizers.
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Appendix A.4. Proof of Theorem 3

With d̃i the columns of D̃,

‖D̃p − c‖22 =

N∑
i=1

N∑
j=1

pi p jd̃H
i d̃ j − 2

N∑
i=1

pid̃H
i c + ‖c‖22 (A.13)

Equality with (A.11) is obtained by remarking that

d̃H
i d̃ j = tr

(
(didH

i )H(d jdH
j )

)
(A.14)

= |dH
i d j|

2 (A.15)

d̃H
i c = tr((didH

i )HC) (A.16)

= dH
i Cdi (A.17)

Appendix A.5. Proof of Theorem 4

The random DAMAS algorithm can be interpreted as the
Uniform Coordinate Descent for Composite Functions algo-
rithm of [16], by reformulating problem (15) as the uncon-
strained problem

argmin
p∈RN

J(p) +

N∑
i=1

Ψ(pi) (A.18)

where Ψ(pi) = 0 if pi ≥ 0, and Ψ(pi) = +∞ if pi < 0. The
algorithm operates as follows:

1. Choose randomly an index ik with probability 1/N

2. T k = argmint ∇(J(pk))ik t +
Aik ik

2 t2 + Ψ(pk
ik

+ t)

3. pk+1
j = pk

j for j , ik
4. pk+1

ik
= pk

ik
+ T k

Solution of step 2 is either

T =
1

Aik ik
(bik −

N∑
j=1

Aik j pk
j) (A.19)

if T + pk
ik
≥ 0, or else T k = −pk

ik
. In either case, pk+1

ik
is given by

the DAMAS iteration (11). Theorem 5 of [16] yields (21).
We now extend the results of Appendix A.2 to give a bound

on ‖h‖2 in function of ε = J(p? + h) − J(p?), in cases where
A? is positive definite with smallest eigenvalue κ > 0, and S̄ is
non-empty.

Firstly, using (A.6), we get

‖hS̄ ‖1 ≤
ε

mini∈S̄ µi
(A.20)

With AS̄ the principal submatrix (and therefore, semi-definite
positive) of A for indices in S̄ , and AS̄ S the rectangular matrix
for rows in S̄ and columns in S ,

hHAh =
(
hH

S A?hS + hH
S̄ AS̄ S hS + hH

S AH
S̄ S hS̄ + hH

S̄ AS̄ hS̄

)
.

(A.21)
As hH

S A?hS ≥ κ‖hS ‖
2
2, hH

S̄
AS̄ hS̄ ≥ 0, hHAh ≤ 2ε from (A.7),

κ‖hS ‖
2
2 ≤ 2ε + 2

∣∣∣hH
S̄ AS̄ S hS

∣∣∣ (A.22)

Using Cauchy-Schwarz inequality, ‖AS̄ S ‖ the operator norm of
AS̄ S , i.e. such that ‖AS̄ S x‖2 ≤ ‖AS̄ S ‖‖x‖2, the bound ‖hS̄ ‖2 ≤

‖hS̄ ‖1, and (A.20)∣∣∣hH
S̄ AS̄ S hS

∣∣∣ ≤ ‖hS̄ ‖2‖AS̄ S hS ‖2 (A.23)

≤ ‖hS̄ ‖1‖AS̄ S ‖‖hS ‖2 (A.24)

≤
ε

mini∈S̄ µi
‖AS̄ S ‖‖hS ‖2. (A.25)

Combining with (A.22) yields

κ‖hS ‖
2
2 −

2‖AS̄ S ‖ε

mini∈S̄ µi
‖hS ‖2 − 2ε ≤ 0 (A.26)

Solving this quadratic inequality for ‖hS ‖2 yields

‖hS ‖2 ≤
‖AS̄ S ‖ε

κmini∈S̄ µi
+

√(
‖AS̄ S ‖ε

κmini∈S̄ µi

)2

+
2ε
κ

(A.27)

Using a +
√

a2 + b ≤ a +
√

a2 +
√

b = 2a +
√

b for a, b ≥ 0 and
combining with inequality (A.20) using the triangle inequality
yields

‖h‖2 ≤
1

mini∈S̄ µi

(
1 +

2‖AS̄ S ‖

κ

)
ε +

√
2ε
κ

(A.28)

In the case of empty S̄ , we recover the simple bound ‖h‖2 ≤√
2ε/κ.

Appendix B. Implementation details

The Lawson-Hanson algorithm [15] for solving
argminx∈RN

+
‖Mx − y‖22 is given in Algorithm 1 (here, MP

denotes the restriction of M to the columns with indices in P,
keeping all rows, P̄ the set difference of {1, . . . ,N} and P, and ·†

the Moore-Penrose pseudoinverse). It takes as input the matrix
M, the vector y and a tolerance τ, to be set at 0 for an exact
solution. Here, an iteration of the LH algorithm is considered
to be an execution of the outer loop.

In the course of the algorithm, new indices are found by find-
ing the maximal coefficient of w. For problems (17) and (18),
computation of w is equivalent to computing ∇J(p) = Ap − b,
and dominates the computational complexity of the algorithm.
With y = Ax, yi is given by yi =

∑N
j=1 Ai jx j for a cost of O(N)

per coefficient, and O(N2) for the complete product.

Alternatively, by using Ai j =
∣∣∣∣∑M

k=1 dkidk j

∣∣∣∣2 from (10) and
manipulating the sums, one shows that the values of yi can be
computed with the two steps

ckl =

N∑
j=1

dk jdl jx j (B.1)

and

yi =

M∑
k=0

M∑
l=0

dkidlickl. (B.2)
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To compute Ax, ckl is computed for each pair (k, l), for a cost
of O(N) each. Then, each yi obtained by a double sum with a
cost of O(M2) each. The total cost is thus O(NM2). Moreover,
computations involve coefficients of the M × N matrix D only,
making the storage of the N × N matrix A unnecessary.

The product by Adr is obtained by setting ckk = 0.

Algorithm 1: Lawson-Hanson algorithm

Result: Solution x of argminx∈RN
+
‖Mx − y‖22

P← ∅, x← 0, w←MT (y −Mx), s← 0
while P̄ , ∅ and max wP̄ > τ do

let j be the index (in w) of max wP̄, and add j to P
sP ←M†

Py, sP̄ ← 0
while min sP ≤ 0 do

α← min x j

x j−s j
for j ∈ P where s j ≤ 0

x← x + α(s − x)
remove indices j from P such that x j ≤ 0
sP ←M†

Py, sP̄ ← 0
end
x← s, w←MT (y −Mx)

end
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