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 A B S T R A C T

A variant of the DAMAS algorithm for acoustical source imaging by deconvolution is proposed, 
where the coefficient of the power map to be updated is chosen at each iteration, instead of 
being fixed in advance, or random. As the original DAMAS algorithm, the proposed algorithm 
converges to a solution of the Covariance Matrix Fitting problem. Experimental evaluation of 
the algorithm shows faster convergence than the DAMAS algorithm, with reduced memory 
usage (respectively 40 times faster, and 30 more efficient in memory in a 2D setting). The 
performances of the proposed method lie between CLEAN-SC, which performances are limited 
by its resolution, and the more performant but computationally intensive Lawson–Hanson 
algorithm and gridless method Sliding Frank–Wolfe. The computation complexity in space and 
time of the proposed method, both linear in function of the size of the discretization and number 
of microphones, allows imaging on a three dimensional grid of more than one million points, 
yielding sparser source distributions than with coarser grids in the case of point sources.

. Introduction

The limitations of conventional beamforming for acoustical imaging, in particular in terms of resolution, are known [1], and 
everal methods have been proposed with improved performances. Two such methods, DAMAS (Deconvolution Approach for the 
apping of Acoustical Sources) [2], based on a deconvolution approach, and CMF [3] (Covariance Matrix Fitting), based on a 
east-squares fit of the Cross Spectral Matrix (CSM), the Sample Covariance Matrix (SCM) of the measurements, have been shown 
o be equivalent [4], in the sense that the DAMAS algorithm converges, slowly, towards a solution to the optimization problem 
onsidered by the CMF method. In the same work, an algorithm based on the Lawson–Hanson algorithm (LH) [5] exploiting a 
actorization of the matrix involved in the problem was also proposed, with substantial acceleration of the convergence.
Several methods have been proposed since the introduction of DAMAS. In particular, CLEAN-SC [6] is based on an iterative 

lgorithm aiming at ‘‘cleaning’’ the beamforming map. Gridless methods have been recently investigated, based on the Sliding 
rank–Wolfe algorithm (SFW) [7] to solve a convex problem formulated in a measure space, or with global optimization [8] 
e.g. with genetic algorithms [9]) operating on the parameters of the sources themselves (positions, powers), a nonconvex problem. 
ecent works also considered learning based methods, such as dense neural nets [10], learned ISTA (Iterated Soft Thresholding 
lgorithm) [11,12], or transformer based methods [13]. However the present paper will focus on methods that do not necessitate 
 learning phase.
Owing to its simplicity, DAMAS is still frequently used, as a baseline [10,12,14,15] or for actual use in acoustical imaging [16,17]. 

n this paper, a minor modification is applied to the DAMAS algorithm, making it competitive with the LH algorithm while avoiding 
he necessity of solving linear problems. Instead of selecting the coefficient of the power map to be updated by traversing the 
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grid in a predetermined order, or randomly, the proposed algorithm DAMAS-MI (MI for Maximal Improvement [18]) selects the 
coefficient to update in order to maximize the improvement of the objective function of the CMF problem. A careful implementation 
of the algorithm makes this new selection rule efficient in terms of computational complexity, while accelerating the convergence 
of the algorithm, and reducing its memory demands. Comparison with the LH algorithm on experimental data shows that the 
DAMAS-MI algorithm reaches lower objective function values earlier that LH, allowing faster results when exact minimization of 
the objective function is not necessary. Connections with beamforming and CLEAN-PSF [6] are also outlined. While the main focus is 
the computational efficiency of the proposed algorithm, performances of the proposed DAMAS-MI method are compared to DAMAS, 
LH, CLEAN-SC and the gridfree method CMF-SFW, complementing the already available results on the performances of DAMAS or 
CMF  [19–21]. Previous methods aiming at improving the efficiency of DAMAS or CMF were mostly concerned with the reduction 
of the dimension of the problem through screening (using the beamforming map [22], wavelets [23], or neural networks [15]), 
leaving the algorithms unchanged.

The paper is structured as follows. The model considered in the CMF method, its optimization problem, and existing algorithms to 
solve it are discussed in Section 2. The proposed DAMAS-MI algorithm is introduced in Section 3, with discussion of its computational 
complexity and connections to relevant methods. Numerical and experimental results are given in Section 4, with comparisons to 
CLEAN-SC and CMF-SFW, and an application to a three dimensional region discretized with more that one million points. Concluding 
remarks are given in Section 5.

2. The covariance matrix fitting method

In this section, the signal model, the CMF method (also known as Spectral Estimation Method, SEM [24]) optimization problem, 
and algorithms from the state of the art are recalled.

2.1. Model

The sound radiated by a distribution of sources is measured on an array of 𝑀 microphones. The sources are assumed to be 
monopolar and emitting uncorrelated noises. Their positions are assumed to be on a grid of 𝑁 points in the domain of interest. A 
short-time Fourier transform is performed on the signals, yielding 𝐿 snapshots 𝐦𝑙, vectors of complex amplitudes at a frequency of 
interest at time 𝑙 for each microphone.

These 𝑀 dimensional vectors can be written as 

𝐦𝑙 =
𝑁
∑

𝑗=1
𝐠𝑗𝑠𝑗𝑙 + 𝐧𝑙 , (1)

where 𝐠𝑗 is the vector of Green’s functions from the 𝑗th source to the microphones, 𝐧𝑙 is an additive noise, assumed white in time 
and space and uncorrelated with the signals 𝑠𝑗𝑙. Under these assumptions, the theoretical covariance matrix of the measurements 
𝐦𝑙 is 

𝐑 =
𝑁
∑

𝑗=1
𝑝𝑗𝐠𝑗𝐠𝐻𝑗 + 𝜎2𝐈 (2)

where 𝑝𝑗 is the powers of the 𝑗th source, 𝜎2 is the power of the noise and 𝐈 the 𝑀-dimensional identity matrix. With 𝐆 the 𝑀 ×𝑁
matrix of columns 𝐠𝑗 and 𝐩 the vector collecting the powers 𝑝𝑗 , the covariance matrix 𝐑 can be rewritten 

𝐑 = 𝐆diag(𝐩)𝐆𝐻 + 𝜎2𝐈. (3)

In the CMF method, the powers of the sources are estimated by matching the above theoretical model to the sample covariance 
matrix, or cross spectral matrix, 𝐂, estimated from the 𝐿 snapshots by 

𝐂 = 1
𝐿

𝐿
∑

𝑙=1
𝐦𝑙𝐦𝐻

𝑙 . (4)

More precisely, the powers 𝐩 are estimated by solving the non-negative least-squares (NNLS) problem 

argmin
𝐩∈𝐑𝑁

+

1
2
‖𝐆diag(𝐩)𝐆𝐻 − 𝐂‖2𝐹 (5)

with ‖ ⋅ ‖𝐹  the Frobenius norm, This form of the CMF problem neglects the effect of the noise. However, this simpler problem 
streamlines the exposition of the proposed method. Modifications necessary to account for microphone self-noise will be given in 
Section 3.3.

The CMF problem has several interesting features for source imaging. Firstly, it boils down to a NNLS problem, a well known 
problem in optimization [5]. Secondly, solutions to the CMF problem are sparse. Indeed, solutions to NNLS problems in the 
underdetermined setting are sparse, with at least one solution of (5) that has at most 𝑀(𝑀 +1)∕2 nonzero coefficients [25]. Finally, 
the non-negativity constraints allow super-resolution, the ability to separates close sources [26,27].

The objective function of the CMF problem can be rewritten [4]

𝐽 (𝐩) = 1
‖𝐆diag(𝐩)𝐆𝐻 − 𝐂‖2 (6)
2 𝐹

2 
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= 1
2
𝐩𝑇𝐀𝐩 − 𝐛𝑇0 𝐩 + 𝐶 (7)

where the positive semidefinite matrix 𝐀 has coefficients 
𝐴𝑖𝑗 = |𝐠𝐻𝑖 𝐠𝑗 |

2. (8)

or 
𝐀 = (𝐃𝐻𝐃)⊙ (𝐃𝐻𝐃), (9)

where ⊙ denotes the Hadamard (component-wise) product and ⋅̄ component-wise complex conjugation, and 𝐛0 is defined by its 
coordinates 

𝑏0,𝑖 = 𝐠𝐻𝑖 𝐂𝐠𝑖, (10)

values of a beamforming map computed with unnormalized steering vectors, justifying its notation. 𝐶 is a constant. The negative 
gradient 𝐛(𝐩) of 𝐽 is 

𝐛(𝐩) = 𝐛0 − 𝐀𝐩. (11)

2.2. Algorithms

Several algorithms can be used to solve the CMF problem. Yardibi et al. [3] used the SeDuMi Matlab package, based on the 
interior-point algorithm. The LH algorithm is used in Acoular [28], and an optimized version exploiting the structure of the problem 
was introduced in [4]. It is remarkable that the DAMAS algorithm, introduced by Brooks and Humphreys in 2006 [2], two years 
before Yardibi et al. introduced the CMF method, converges to a solution to the CMF problem, albeit slowly. Indeed, the DAMAS 
algorithm is a coordinate descent algorithm for the CMF problem, iterating cyclically through the coefficients. The iterates 𝐩𝑘 are 
obtained by choosing an index 𝑖𝑘, setting 𝑝𝑘𝑗 = 𝑝𝑘−1𝑗  for 𝑗 ≠ 𝑖𝑘, and 

𝑝𝑘𝑖𝑘 = max

(

0, 1
𝐴𝑖𝑘𝑖𝑘

(

𝑏0,𝑖𝑘 −
𝑖𝑘−1
∑

𝑙=0
𝐴𝑖𝑘𝑙𝑝

𝑘−1
𝑙 −

𝑁
∑

𝑙=𝑖𝑘+1
𝐴𝑖𝑘𝑙𝑝

𝑘−1
𝑙

))

. (12)

DAMAS was introduced and is usually used with a deterministic choice of the updates. Using 𝑖𝑘 = 𝑘 mod 𝑁 will be referred to as
cyclic DAMAS, and iterating from 1 to 𝑁 , and back from 𝑁 to 1, and repeating, will be referred to as roundtrip DAMAS. A final 
variant, Random DAMAS, uses a uniform random choice for 𝑖𝑘 at each iteration.

Although the cost of an iteration is low, in 𝑂(𝑁), the convergence of DAMAS is known to be slow, in part because every point 
of the grid if visited, even if the actual solution to the CMF problem is sparse. Moreover, the DAMAS algorithm involves all 𝑁 ×𝑁
coefficients of 𝐀 explicitly, which necessitates either to store them in memory, or to compute them at each iteration, saving memory 
but increasing the cost of an iteration from 𝑂(𝑁) to 𝑂(𝑀𝑁).

3. Greedy coordinate descent

The convergence rate of coordinate descent, in particular DAMAS, can be improved by choosing the coordinate to update 
according to appropriate rules [18]. In particular, we focus on the Maximum Improvement rule that selects the coordinate to update 
by computing the improvement offered by updating the 𝑖th coordinate, and choosing the best improvement.

At a given iteration 𝑘, varying the 𝑖th coordinate yields 

𝐽 (𝐩𝑘−1 + 𝛼𝐞𝑖) = 𝐽 (𝐩𝑘−1) + 1
2
𝐴𝑖𝑖𝛼

2 − 𝑏𝑖(𝐩𝑘−1)𝛼 (13)

with 𝐞𝑖 the 𝑁 dimensional vector having value 1 at index 𝑖 and 0 elsewhere. The minimum of the unconstrained problem is at 
𝛼⋆𝑖 = 𝑏(𝐩𝑘−1)𝑖

𝐴𝑖𝑖
, yielding an improvement of

𝛿⋆𝑖 = 𝐽 (𝐩𝑘−1) − 𝐽 (𝐩𝑘−1 + 𝛼⋆𝑖 𝐞𝑖) (14)

= 1
2
𝑏(𝐩𝑘−1)2𝑖

𝐴𝑖𝑖
. (15)

In the case where 𝑝𝑘−1𝑖 + 𝛼⋆𝑖 < 0, then the constrained minimum of 𝐽 is at 𝛼†𝑖 = −𝑝𝑘−1𝑖  (that is, the power of the source 𝑖 is set at 
0), with improvement

𝛿†𝑖 = 𝐽 (𝐩𝑘−1) − 𝐽 (𝐩𝑘−1 + 𝛼†𝑖 𝐞𝑖) (16)

= −𝑝𝑘−1𝑖 𝑏𝑖(𝐩𝑘−1) −
1
2
𝐴𝑖𝑖(𝑝𝑘−1𝑖 )2. (17)

The improvement obtained by updating the coordinate 𝑖 is then 

𝛿𝑖 =
{

𝛿⋆𝑖  if 𝑝𝑘−1𝑖 + 𝛼⋆𝑖 ≥ 0
𝛿†  else (18)

𝑖

3 
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Then the 𝑖⋆-th coordinate maximizing the improvement is updated, with 𝑝𝑘𝑖⋆ = 𝑝𝑘−1𝑖⋆ + 𝑏𝑖⋆ (𝐩𝑘−1)
𝐴𝑖⋆𝑖⋆

 in the first case, 𝑝𝑘𝑖⋆ = 0 in the 
second case, or equivalently, 

𝑝𝑘𝑖⋆ = max(0, 𝑝𝑘−1𝑖⋆ + 𝛼⋆𝑖⋆ ), (19)

leaving the other coordinates constant.
The iteration ends with the update of the gradient, with 

𝐛(𝐩𝑘) = 𝐛(𝐩𝑘−1) − (𝑝𝑘𝑖⋆ − 𝑝𝑘−1𝑖⋆ )𝐚𝑖⋆ (20)

 where 𝐚𝑖⋆  is the 𝑖⋆-th column of 𝐀.
The algorithm can be stopped after a given number 𝐾 of iterations,  or when a stopping condition is reached. Here, we will stop 

the iterations when the improvement of the objective function by an iteration falls below a fixed threshold 𝜀, i.e. when 
𝐽 (𝐩𝑘−1) − 𝐽 (𝐩𝑘)

𝐽 (𝐩𝑘)
< 𝜀. (21)

 The influence of the choice of 𝜀 will be investigated in the numerical experiments, in particular its effect on the resolving power 
of the method, and overfitting at low SNR.

The algorithm can be simplified and accelerated by normalizing the columns of 𝐆, which implies 𝐴𝑖𝑖 = 1 for all 𝑖, and rescaling 
the estimated vector 𝐩 after stopping the iterations. This version is summarized in Alg. 1, where ̃⋅ indicates values computed using 
normalized columns 𝐠̃𝑖.
Algorithm 1 DAMAS-MI algorithm
Initialize the estimated powers: 𝐩̃0 = 0,
Initialize the set of computed columns of 𝐀:  = ∅
Compute the norms 𝑛𝑖 of the columns of 𝐆
Compute the normalized columns 𝐠̃𝑖 = 𝐠𝑖∕𝑛𝑖 of the matrix 𝐆̃
Initialize the negative gradient ̃𝐛0 = 𝐛̃(𝐩0) with

𝑏̃0,𝑖 = 𝐠̃𝐻𝑖 𝐂𝐠̃𝑖
for k=1, . . . , K do
 Compute

𝛼𝑖 = 𝑏̃(𝐩𝑘−1)𝑖 (22)

𝛿⋆𝑖 = 1
2
𝑏̃(𝐩𝑘−1)2𝑖 (23)

𝛿†𝑖 = −𝑝̃𝑘−1𝑖 𝑏̃(𝐩̃𝑘−1)𝑖 −
1
2
(𝑝̃𝑘−1𝑖 )2 (24)

𝛿𝑖 =
{

𝛿⋆𝑖  if 𝑝̃𝑘−1𝑖 + 𝛼𝑖 ≥ 0
𝛿†𝑖 else (25)

 Find the index 𝑖⋆ of the maximal 𝛿𝑖
 Update

𝑝̃𝑘𝑖⋆ = max(0, 𝑝̃𝑘−1𝑖⋆ + 𝛼𝑖⋆ )

 Retrieve 𝐚̃𝑖⋆  from , or compute it and store it in 
 Update

𝐛̃(𝐩𝑘) = 𝐛̃(𝐩𝑘−1) − (𝑝̃𝑘𝑖⋆ − 𝑝̃𝑘−1𝑖⋆ )𝐚̃𝑖⋆
end for
Rescale the estimated powers with 𝑝𝑖 = 𝑝̃𝐾𝑖 ∕𝑛

2
𝑖

3.1. Computational complexity

The computational complexities of classical DAMAS and the proposed DAMAS-MI are now compared. The computational 
complexity of the algorithms is composed of the complexity of the initialization, and that of the iterations.

An initialization task common to all algorithms is the computation of the beamforming map 𝐛0, with cost 𝑂(𝑁𝑀2), that will not 
be considered when comparing the methods. In DAMAS, the matrix 𝐀 can be precomputed with a cost 𝑂(𝑁2𝑀). This case will be 
denoted DAMAS offline.

The cost of an iteration of DAMAS, i.e. computation of Eq. (12), is either 𝑂(𝑁) when 𝐀 is precomputed, or 𝑂(𝑁𝑀) when the 
necessary coefficients of 𝐀 are not stored, but computed when needed (DAMAS online). The total complexity of the DAMAS algorithm 
is thus 𝑂(𝑁2𝑀) + 𝑂(𝐾𝑁) for the offline case, and 𝑂(𝐾𝑁𝑀) for the online case. In typical applications, 𝐾 is much larger than 𝑁 , 
making the online DAMAS much less efficient in terms of time complexity. However, online DAMAS is frugal in memory compared 
to offline DAMAS, avoiding the storage of the large 𝑁 ×𝑁 matrix 𝐀, limiting the necessary storage to the iterates 𝐩𝑘 of size 𝑁 .
4 
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Table 1
Computational complexity of DAMAS variants.
 Algorithm Space Time  
 DAMAS-MI 𝑂(𝑆𝐾𝑁) 𝑂(𝑆𝐾𝑁𝑀) + 𝑂(𝐾𝑁) 
 DAMAS offline 𝑂(𝑁2) 𝑂(𝑁2𝑀) + 𝑂(𝐾𝑁)  
 DAMAS online 𝑂(𝑁) 𝑂(𝐾𝑁𝑀)  
 CLEAN-SC 𝑂(𝑁) 𝑂(𝐾𝑁𝑀2)  
 CLEAN-SC with Eq. (20) 𝑂(𝑁) 𝑂(𝐾𝑁𝑀)  

In the proposed DAMAS-MI algorithm, the cost of an iteration consists of computing the improvement for each index 𝑖 with 
Eqs. (15), (17) and (18), for a cost linear in 𝑁 , and updating the gradient. The update of the gradient with Eq. (20) costs either 
𝑂(𝑁) if 𝐚𝑖⋆  is stored in memory, or 𝑂(𝑁𝑀) if 𝐚𝑖⋆  is computed from Eq. (8). Due to the sparsity of the solution, it is likely that only 
a few coefficients will be chosen in the iterations. This can be exploited by computing 𝐚𝑖⋆  only when needed with a cost 𝑂(𝑁𝑀), 
and storing it for further usage. The number of columns computed and stored in  up to iteration 𝐾 (or equivalently, the number 
of unique coefficients updated until iteration 𝐾) is denoted 𝑆𝐾 , with the obvious bounds 1 ≤ 𝑆𝐾 ≤ min(𝑁,𝐾). The total complexity 
is then 𝑂(𝑆𝐾𝑁𝑀) + 𝑂(𝐾𝑁), for a storage space of 𝑂(𝑆𝐾𝑁) for the computed columns of 𝐀.

As a conclusion, for a given number of iterations, the complexity in time of the proposed DAMAS-MI algorithm is lower than 
the complexities of DAMAS (see Table  1). 

Note that this discussion does not take into account the convergence rate of the objective function in function of the number of 
iterations. Numerical results will show that the proposed DAMAS-MI is both more efficient for a given number of iterations, and 
converges faster than the DAMAS algorithm.

3.2. Connections with other methods

It was already shown in [4] that the original DAMAS algorithm is closely connected to the CMF method, as its iterates converge 
towards a solution to the CMF problem. We give here additional connections, in particular to CLEAN-PSF and CLEAN-SC.
Beamforming. The connection with beamforming is obvious when considering the first iteration of the algorithm: a new source is 
identified by maximizing 

𝛿⋆𝑖 =
𝑏20,𝑖
2𝐴𝑖𝑖

(26)

= 1
2

(

𝐠𝐻𝑖 𝐂𝐠𝑖
‖𝐠𝑖‖22

)2

(27)

which corresponds to a beamforming map obtained by the formulation IV of steering vectors [29]. The power is then updated with

𝑝1𝑖⋆ =
𝑏0,𝑖⋆
𝐴𝑖⋆𝑖⋆

(28)

=
𝐠𝐻𝑖 𝐂𝐠𝑖
‖𝐠𝑖‖42

, (29)

with here formulation III of the steering vectors. The combination of formulations IV and III has been shown to be optimal in terms 
of bias and variance for estimating the position and power of a source [30]. The next iterations proceeds similarly, operating on 
the beamforming map 𝐛(𝐩𝑘) obtained by removing the contribution of the identified sources in the SCM. We note that after the first 
iteration, 𝐛(𝐩𝑘) is not necessarily positive, and the location of the maximum of the absolute value of the normalized beamforming 
map is selected.
CLEAN-PSF. CLEAN-PSF [6] operates in a similar way, by selecting a source at the maximum of a beamforming map and removing 
its contribution with an optional damping parameter 𝜙. However, this algorithm does not have a procedure for diminishing, 
or removing entirely, powers of sources that have been overestimated at an early iteration. We note that this interpretation of 
the CLEAN-PSF algorithm suggest to use formulation III to locate the source, and formulation IV to estimate its power, as in 
beamforming. Additionally, Eq. (20) can be used to update the beamforming map instead of computing it from the cleaned SCM at 
each iteration, reducing the cost of an iteration from 𝑂(𝑁𝑀2) to 𝑂(𝑁𝑀). These remarks remain valid for CLEAN-SC, and will be 
followed in the numerical experiments.
Matching pursuit. The greedy selection of the updated coefficient bears resemblance with the Matching Pursuit algorithm. However 
here the nonnegativity constraint in considered. We note that Orthogonal Matching Pursuit was proposed for source deconvolution 
in [20,31], with no nonnegativity constraint, and with the goal of decomposing the beamforming map, and not the covariance 
matrix.

Lawson–hanson. The Lawson–Hanson algorithm [5] finds a minimizer of the CMF problem in a finite number of iterations. Similarly 
to the other methods, sources are identified one at a time, and powers of all sources are updated. This update may need solving 
several unconstrained least-squares problems, which comes at high computational cost.
5 
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Fig. 1. Experimental setup. (a) Acoustical sources. (b) Positions of the array microphones.

3.3. Diagonal removal

In experimental settings where self-noise of the microphones is non-negligible, it is usual to use diagonal removal in beamforming, 
CLEAN-SC, DAMAS or similar methods. The influence of uncorrelated microphone noise in the covariance matrix is the addition of 
diagonal terms. For better robustness with respect to this noise, the diagonal terms of the covariance matrix can be neglected, with 
a modified Frobenius norm ‖⋅‖𝐹 ,dr where the diagonal is not considered. The obtained criterion is

𝐽dr (𝐩) =
1
2
‖𝐆diag(𝐩)𝐆𝐻 − 𝐂‖2𝐹 ,dr (30)

= 1
2
‖𝐆diag(𝐩)𝐆𝐻 − 𝐂‖2𝐹 − 1

2

𝑀
∑

𝑚=1

((

𝐆diag(𝐩)𝐆𝐻)

𝑚𝑚 − 𝐶𝑚𝑚
)2 (31)

where the first term is 𝐽 (𝐩), and the second term, denoted 𝐽𝑑 (𝐩), cancels the diagonal coefficients in the Frobenius norm. Remarking 
that (𝐆diag(𝐩)𝐆𝐻)

𝑚𝑚 =
∑𝑁

𝑖=1 𝑝𝑖|𝑔𝑖,𝑚|
2 and expanding the square, the second term is 

𝐽d(𝐩) =
1
2

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑝𝑖𝑝𝑗

𝑀
∑

𝑚=1
|𝑔𝑖,𝑚𝑔𝑗,𝑚|

2 −
𝑁
∑

𝑖=1
𝑝𝑖

𝑀
∑

𝑚=1
|𝑔𝑖,𝑚|

2𝐶𝑚𝑚 + 1
2

𝑀
∑

𝑚=1
𝐶2
𝑚𝑚 (32)

With the matrix 𝐀𝑑 and the vector 𝐛0,d with coefficients

𝐴d,𝑖𝑗 =
𝑀
∑

𝑚=1
|𝑔𝑖,𝑚𝑔𝑗,𝑚|

2 (33)

𝑏0,d,𝑖 =
𝑀
∑

𝑚=1
|𝑔𝑖,𝑚|

2𝐶𝑚𝑚 (34)

= 𝐠𝐻𝑖 diag(𝐂)𝐠𝑖, (35)

where diag(𝐂) is the diagonal matrix with the same diagonal coefficients as 𝐂, 𝐽d(𝐩) can be rewritten 

𝐽d(𝐩) =
1
2
𝐩𝑇𝐀d𝐩 − 𝐛𝑇0,d𝐩 + 𝐶d (36)

with 𝐶d a constant. Combining with Eq. (7), the criterion 𝐽dr (𝐩) is written 

𝐽dr =
1
2
𝐩𝑇𝐀dr𝐩 − 𝐛𝑇0,dr𝐩 + 𝐶dr (37)

where the matrix 𝐀dr is given by its coefficients

𝐴 = 𝐴 − 𝐴 (38)
dr,𝑖𝑗 𝑖𝑗 d,𝑖𝑗
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Fig. 2. Comparison of (a) beamforming (formulation IV), (b) LH, (c) method DAMAS-MI, DAMAS in its (d) random, (e) cyclic and (f) roundtrip 
variants, as well a CLEAN-SC with (g) 𝜙 = 1 and (h) 𝜙 = 0.1, Powers in dB.

Fig. 3. Decay of the objective in function of the iteration count, 2D case.

= |𝐠𝐻𝑖 𝐠𝑗 |
2 −

𝑀
∑

𝑚=1

|

|

|

𝑔2𝑖,𝑚𝑔
2
𝑗,𝑚

|

|

|

, (39)

the vector 𝐛0,dr by

𝑏0,dr,𝑖 = 𝑏0,𝑖 − 𝑏0,d,𝑖 (40)

= 𝐠𝐻𝑖 (𝐂 − diag(𝐂))𝐠𝑖 (41)

and 𝐶dr = 𝐶 − 𝐶d is a constant.
As a conclusion, using a diagonal removal formulation consists in using 𝐀dr and 𝐛0,dr instead of the original 𝐀. To ensure that 

𝐴dr,𝑖𝑖 = 1, the columns of 𝐆 are normalized by 𝑛𝑖 = 4
√

‖𝐠𝑖‖4 −
∑𝑀

𝑚=1
|

|

|

𝑔4𝑖,𝑚
|

|

|

 in Alg. 1.

4. Experimental and numerical results

The proposed method is tested using simulated data and experimental data recorded in an anechoic chamber, and compared to 
LH and CLEAN-SC in particular. The setup of the experiments is identical to the experiments described in [32].
7 
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Fig. 4. Decay of the objective in function of computational time, 2D case.

Fig. 5. Size of the support of the iterates, 2D case.

Fig. 6. Number of necessary columns of 𝐀 in function of the iteration count, 2D case.
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Fig. 7. Comparison of estimated sources distribution by (a), (b) beamforming, (c), (d) LH, (e), (f) DAMAS-MI and (g), (h) CLEAN-SC at (a), (c), 
(e), (g) 𝐹 = 781 Hz and (b), (d), (f), (h) 𝐹 = 5004 Hz. Powers in dB.

Fig. 8. Influence of the number of sources. Positions of the sources used in the simulation (a), and beamforming map (b) when all sources are 
active.

The soundfield is measured by a microphone array with 128 digital MEMS microphone (Invensense - INMP441) with a 26 dBFS 
sensitivity (1kHz, 94dBSPL) and a flat response in the band [150 Hz – 15 kHz]. The geometry of the array is given in Fig.  1. The 
antenna counts 128 elements distributed along 16 linear rays. On each ray, the 8 microphones are spaced regularly at 17 cm intervals, 
the distance between the first microphone and the center of the array follows a pseudo-random distribution.

In the experiment, four sources, baffled broadband omnidirectional loudspeakers (Visaton-BF32 - [150Hz–20kHz]) are used (see 
Fig.  1).

The microphone signals are sampled at 𝐹𝑠 = 50 kHz and analyzed by Short-Term Fourier Transform, with a 2048 samples Hann 
window (41 ms duration and 75% overlap), yielding 939 snapshots.

Numerical computation are conducted on a laptop with 32 GB of memory and an Intel Core Ultra 9 185H CPU using python 
code available online [33]. The indicated sources powers are given at a distance of 1 meter to the source.

4.1. 2D case, experimental data

The method is first tested on a 2D case, where sources are searched in a planar region at a distance of 4.4 m to the array, of 
rectangular shape with dimensions 3 m × 1 m, discretized with a step 𝛥 of 0.02 m, yielding 𝑁 = 7701 points.

Fig.  2 shows the results, at 𝐹 = 2002 Hz, of (a) beamforming (formulation IV), (b) LH, (c) the proposed method DAMAS-MI, 
DAMAS in its (d) random, (e) cyclic and (f) roundtrip variants, as well a CLEAN-SC with (g) 𝜙 = 1 and (h) 𝜙 = 0.1, with 75000 
9 
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Fig. 9. Influence of the number of sources. (a) Total specific error, (b) Inverse error, (c) Computational time.

iterations for each algorithm (CLEAN-SC is stopped when the maximal value of the beamforming map falls below 10−3 times its 
initial value).

The decrease of the objective function 

𝛿𝑘 =
𝐽 (𝐩𝑘) − 𝐽 (𝐩⋆)

𝐽 (𝐩⋆)
(42)

relative to the actual minimum with the exact solution 𝐩⋆ obtained by the Lawson–Hanson algorithm, is plotted on Fig.  3 in function 
of the number of iterations, showing that the proposed method is not only more efficient than DAMAS in terms of computational 
cost per iteration, but also exhibits faster convergence in function of the number of iterations. CLEAN-SC is stopped early, as it is 
not capable of reducing the power of previously identified sources, with, as expected, slower decay for 𝜙 = 0.1.

Fig.  4 shows the decrease of the objective in function of time. While LH converges in finite time, early iterations of DAMAS-MI 
have lower objectives than LH.
10 
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Fig. 10. Errors with two sources for varying frequency. (a) Specific error source 1, (b) Specific error source 2, (c) Inverse error.

Fig.  5 shows the evolution of the size of the support of the iterates, with sparse iterates for DAMAS-MI. The number of columns 
of 𝐀 to be explicitly computed is given in Fig.  6. As expected, DAMAS-MI needs a reduced number of columns of 𝐀 compared to 
the other versions of DAMAS, reducing its memory usage by a factor 30.

Further reconstructions are given on Fig.  7 at two additional frequencies, 𝐹 = 781 Hz and 𝐹 = 5004 Hz, for beamforming, LH, 
DAMAS-MI and CLEAN-SC with 𝜙 = 0.1. Here DAMAS-MI is stopped using 𝜀 = 10−5. At low frequency, DAMAS-MI, with the value 
of 𝜀 used here, cannot resolve the two central sources. CLEAN-SC cannot resolve the central sources either, and spread the outer 
sources on curves. At higher frequency, all methods performs well.

4.2. Simulations

Simulations are used to assess the resolution, accuracy, and numerical efficiency of the proposed method compared to LH, CLEAN-
SC, and CMF-SFW, a gridless method based on the Sliding Frank–Wolfe algorithm which was shown to outperform gridless methods 
based on CLEAN-SC, HR-CLEAN-SC [34] or global optimization.

The methods are compared using the inverse level error and specific level errors defined in [21]. The specific level error for a 
given source is defined here as the mean squared error between its power and the sum of the powers estimated in a ball of radius 
𝑅 around its position. The inverse level error is the sum of the powers estimated outside of the union of these balls.
11 
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Fig. 11. Errors with varying SNR. (a) Total specific error, (b) Inverse error (zero errors for COMET2 and CLEAN-SC with 𝜙 = 1 are not plotted).

Table 2
Powers of the simulated sources.
 Source 1 2 3 4 5 6 7 8  
 Powers (Pa2) 1 0.8 0.5 1 0.7 0.8 0.4 0.3 

Number of sources. In a first set of simulations, the performances are evaluated in function of the number of sources present in the 
domain of interest, with a maximum of 8 sources. The positions and ranks of the sources are given in Fig.  8, at a distance of 3 
meters from the array, with 𝐹 = 1642 Hz. Their powers are given in Table  2. We used here 𝑅 = 0.05 m. The power of the noise is 
𝜎2 = 0.1 Pa2, resulting in an SNR ranging from 0.14 dB (one source) to 7.31 dB (eight sources).

The sum of the specific errors is plotted in Fig.  9-(a) in function of the number of sources. This sum is naturally increasing, as 
more sources are taken into account. Sharp increases are seen when the third and fifth sources are introduced. Being close to the 
first and second sources respectively, their introduction implies resolution issues. The inverse level errors are plotted on Fig.  9-(b).

Best performances are obtained by CMF-SFW and LH, with the caveat that the number of sources is assumed to be known and 
used as the number of iterations for CMF-SFW. Moreover, computation times for LH and CMF-SFW are large (see Fig.  9-(c)), and 
increasing with the number of sources for CMF-SFW.

Performances of CLEAN-SC are limited by its resolution power, with errors increasing significantly when the third and fifth 
sources are introduced. DAMAS-MI offers a good compromise between performances and computational time, that can be tuned 
with the stopping criterion 𝜀.

Resolution. The resolution of the tested methods is assessed more precisely by simulations with two sources at fixed positions, at 
varying frequency between 273 Hz and 3248 Hz. The specific errors and the inverse level error are plotted on Fig.  10 for the methods 
tested above, with 𝑅 = 0.02 m, and a SNR of 2.70 dB. It can be seen that the resolving power of DAMAS-MI can be improved by 
12 



G. Chardon Journal of Sound and Vibration 621 (2026) 119483 
Fig. 12. Errors with pairs of correlated sources. (a) Total specific error, (b) Inverse error (zero errors for COMET2 and CLEAN-SC with 𝜙 = 1
are not plotted).

lowering 𝜀 (raising the number of iterations), at a cost of longer computations. CLEAN-SC is capable of resolving the sources only 
at higher frequencies, with slightly better performances obtained at 𝜙 = 0.1.

These numerical experiments show that DAMAS-MI has better performances than CLEAN-SC, in particular in resolution power, 
while maintaining reasonable computation times.

SNR. The performances are now evaluated in function of the SNR, ranging from −15 dB to 15 dB, plotted on Fig.  11. To avoid 
performances issues caused by closely spaced sources, only sources 1, 2, 4 and 6 on Fig.  8 are used. At low SNR, best performances 
are obtained by DAMAS-MI with 𝜀 = 10−6. These performances can be explained by the value of 𝜀 avoiding overfitting of the model 
to the data. This observation is supported by the higher errors obtained with 𝜀 = 10−8, and LH, which returns the exact solution of 
the optimization problem.

Source correlation. In the theoretical model, sources are assumed to be uncorrelated. The robustness of the method to source 
correlation is assessed, using two pairs of correlated sources (sources 1 and 2, and sources 4 and 6), with correlations ranging from 
0 (no correlation) to 1 (full correlation, the sources emit identical signals). As shown on Fig.  12, errors increase with correlation 
for all methods. However, the CMF based methods (LH and DAMAS-MI) are less affected by source correlation. For CLEAN-SC, 
the degradation of the performances with correlation can be attributed to the manipulation of the steering vector at each iteration 
aiming at removing sources correlated to the identified source.

Noise correlation. Uncorrelated noise (i.e., diagonal covariance matrix of the noise) is assumed in the model. We test here the 
robustness of the method to noise correlation, using a covariance function 𝑐(𝐱, 𝐲) = 𝜎2 exp(−‖𝐱 − 𝐲‖2∕𝑙) where 𝑙 is a correlation 
length, ranging from 0 to 0.4 m. The errors plotted on Fig.  13 show that the influence of noise correlation on the performances is 
rather weak for the proposed method.
13 
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Fig. 13. Errors with correlated noise. (a) Total specific error, (b) Inverse error (zero errors for COMET2 and CLEAN-SC with 𝜙 = 1 are not 
plotted).

Fig. 14. Three dimensional distribution of sources obtained at 𝐹 = 2002 Hz by DAMAS-MI ((a) front view and (b) top view) and LH ((c) front 
view and (d) top view).

4.3. 3D case, experimental data

The method is now tested on a 3D case, with a region of interest of dimensions 3.4× 1.6× 1.6 (in meters), discretized with a step 
𝛥 of 0.02 m, containing 1,121,931 points. Fig.  14 compares the source distributions at 𝐹 = 2002 Hz obtained by LH (computational 
time 17 min) and DAMAS-MI with 𝜀 = 10−3 (23 iterations, 4.7 s, including the initialization of the gradient by beamforming Eq. (10), 
14 
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Fig. 15. Decay of the objective in function of computational time, 3D case.

Fig. 16. Support of the solution and computed columns of 𝐀, 3D case.

2.4 s). Convergence of the objective function is plotted on Fig.  15 for up to 200,000 iterations, showing lower values of the objective 
function at early iterations for DAMAS-MI compared to LH.

The size of the support of the iterates and the number of computed columns of 𝐀 are plotted in Fig.  16. Only 719 columns of 𝐀
are needed, 0.06% of the total number of columns.

The effect of the size of the grid is demonstrated on DAMAS-MI with grid steps 𝛥 of 0.02 m (1,121,931 points), 0.05 m (75,141) 
and 0.1 m (10,115). Fig.  17 shows the front view of the source distributions estimated at 𝐹 = 6982 Hz. At coarser grid steps, the 
sources are spread over several grid points (all sources at 𝛥 = 0.1 m, left source at 𝛥 = 0.05 m), while there are mostly limited to 
one grid points at 𝛥 = 0.02 m.

This property is shown at frequencies of 𝐹 = 6982 Hz, 7983 Hz, 8984 Hz and 9985 Hz. The estimated power for each grid node 
is plotted in Fig.  18 in decreasing order, for the 10 largest values. Compared to the coarser grids, the source powers obtained with 
the finer grid with 𝛥 = 0.01 m are concentrated on the first four most powerful sources, the following sources (due to spreading of 
the sources, noise, model errors, etc.) having lower powers than with coarser grid steps.

5. Conclusion

A modification of the DAMAS algorithm is proposed, based on a greedy selection of the coordinate to be updated at each iteration. 
The choice of the grid point, and the amount of power added or removed, is consistent with classical beamforming, and are based 
on the interpretation of DAMAS as a coordinate descent algorithm for the CMF problem.

Simulations and application to experimental measurements showed that convergence is indeed faster than deterministic or 
random DAMAS, with convergence 40 times faster in the 2D case, and lower memory usage (memory usage divided by 30). 
Additionally the iterates are sparse, an expected property of at least one of the solution of the CMF problem. The proposed algorithm 
is complementary to the Lawson–Hanson algorithm and gridless methods, as it offers an approximate, but fast, solution to the CMF 
problem, with an algorithm similar to established methods from the state of the art and based on elementary mathematical operations 
(in particular, no matrix inversion is needed).

Comparison to the similar CLEAN-SC algorithm showed that DAMAS-MI has better performances in terms of power estimation, 
that can be attributed to its better resolving power and better robustness with respect to correlations between sources.
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Fig. 17. Front view of the source distributions estimated by DAMAS-MI at 𝐹 = 6982 Hz, with (a) 𝛥 = 0.1 m, (b) 𝛥 = 0.05 m and (c) 𝛥 = 0.02 m.

Fig. 18. Powers of the 20 most powerful grid nodes, in decreasing orders, for 𝛥 = 0.1 m, 𝛥 = 0.05 m and 𝛥 = 0.02 m, for DAMAS-MI with 𝜀 = 10−3

at (a) 𝐹 = 6982 Hz, (b) 𝐹 = 7983 Hz., (c) 𝐹 = 8984 Hz and (d) 𝐹 = 9985 Hz.

The numerical efficiency of the method makes large scale applications possible, e.g. on a three dimensional grid with more than 
one million points, with running time in the order of the time necessary to compute a beamforming map. This make the use of fine 
grids possible, enhancing the sparsity of the estimated source distribution, as demonstrated in a case with four point sources.
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