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This paper proposes an efficient method for the joint localization of sources and estimation of the

covariance of their signals. In practice, such an estimation is useful to study correlated sources

existing, for instance, in the presence of spatially distributed sources or reflections, but is con-

fronted with the challenge of computational complexity due to a large number of required esti-

mates. The proposed method is called covariance matrix fitting by orthogonal least squares. It is

based on a greedy dictionary based approach exploiting the orthogonal least squares algorithm in

order to reduce the computational complexity of the estimation. Compared to existing methods for

sources correlation matrix estimation, its lower computational complexity allows one to deal with

high dimensional problems (i.e., fine discretization of the source space) and to explore large regions

of possible sources positions. As shown by numerical results, it is more accurate than existing

methods and does not require the tuning of any regularization parameter. Experiments in an

anechoic chamber involving correlated sources or reflectors show the ability of the method to locate

and identify physical and mirror sources as well. VC 2019 Acoustical Society of America.

https://doi.org/10.1121/1.5138931
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I. INTRODUCTION

Source imaging methods have been developed for deca-

des in order to locate acoustic sources and to estimate their

power. Many works have been proposed to overcome the

well-known limitations of the delay-and-sum (DAS) beam-

forming technique, based on parametric approaches,1 or non-

parametric approaches based on Bayesian estimation,2,3 or

based on sparsity and compressed sensing.4–6

This paper addresses the inverse problem of estimating

the covariance matrix of acoustic sources. This estimate not

only quantifies the power of the sources, but their covarian-

ces as well. These quantities are computed on a grid, discre-

tizing the region where sources are assumed to be located.

This grid is used to build a dictionary of sources, and the

measured acoustical field is decomposed as the sum of few

dictionary sources. This sparse decomposition is obtained

here by the orthogonal least squares (OLS) algorithm.

In practice, sources correlation estimation can be useful

in various scenarios: in a reverberant space, mirror sources

will be correlated with the corresponding physical source.

Estimating the coherence between sources will allow us to

pair physical sources with their reflections. Another typical

case of correlated sources are extended sources whose distri-

butions radiate correlated signals.

Localizing coherent sources poses an important chal-

lenge to subspace-based localization methods such as

MUSIC or ESPRIT. In this case the covariance matrix of the

sources, and thus of the measured signals, is rank-deficient,

limiting the performances of these methods. For particular

array configurations (symmetric or translation invariant),

this issue can be mitigated by the use of spatial smoothing,

at the price of reduced array aperture.1 Methods based on

sparse approximations or Bayesian estimation can deal with

correlated sources, using the complete measurements instead

of their covariance matrix.7–9

In the cases where correlations are not seen as a nui-

sance, but as parameters to be estimated, an additional chal-

lenge is the computational complexity of the estimation.

Compared to a standard localization problem, where the

space is usually discretized on a grid of L points, the estima-

tion of the correlations between sources involves the estima-

tion of a covariance matrix of size L�L. The computational

cost increases dramatically with the number of points requir-

ing suitable algorithms. Numerical methods with a complex-

ity larger than linear in the size of the grid will be limited to

small grid discretizations.

Beyond the coarse estimation provided by the delay-

and-sum beamformer extended to covariance estimation

(called DAS-C in the remainder of the article), few methods

have been proposed in the literature to solve the covariance

source estimation problem (a short review is given in

Sec. II). Based on convex optimization methods, their com-

plexity is in the order of OðL6Þ,10 or OðL3L3
hÞ, where Lh is an

upper bound on the number of independent sources.11 Such

computational complexities will limit the application of

these methods to coarse discretizations of the physical space.

In this paper, we propose a method called covariance

matrix fitting by orthogonal least squares (CMF-OLS) to

solve the covariance matching problem with a greedya)Electronic mail: gilles.chardon@centralesupelec.fr
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approach. It is based on the orthogonal least squares (OLS)

algorithm,12 similar to the well-known orthogonal matching

pursuit algorithm (OMP),13,14 but better suited to the prob-

lem of covariance matrix estimation. Indeed, it can take full

advantage of the matrix structure of the estimation problem.

Moreover, OLS is expected to yield better estimates than

OMP in cases where the dictionary is strongly coherent (in

the sense that columns of the dictionary are near-linearly

dependent).15

The main advantage of this approach compared to exist-

ing methods is that its time complexity is linear with respect

to the size of the discretization L, allowing fine grid discreti-

zations and short running times. Moreover, contrary to meth-

ods based on regularization, the algorithm takes only one

parameter, the number of sources that can be estimated by

inspecting the convergence of the algorithm. A post-

processing can then be applied to the estimated covariance

matrix to extract the spatial shape of each source within a

group of sources issued from the same cause.

The article is structured as follows: Sec. II introduces

the problem and notations. Correlated source localization

methods and greedy sparse approximations are briefly

reviewed in Sec. III. Sections IV and V introduce the CMF-

OLS algorithm for covariance matrix estimation, and the

post-processing, respectively.

Simulation results presented in Sec. VI performed in a

one dimensional (1 D) scenario show that the proposed

method is more accurate and faster than the methods of the

literature such as DAS-C or mapping of acoustic correlated

sources (MACS).11 In addition, Sec. VII introduces experi-

ments that have been conducted in an anechoic room in vari-

ous scenarios: uncorrelated sources, correlated sources, and

sources in the presence of a reflector. Results confirm that

positions and correlations of the sources can be accurately

estimated in large-scale (in fact, realistic scale) scenarios

where other methods are too demanding in time or memory

size. Section VIII concludes the paper.

II. PROBLEM FORMULATION

Assume that N microphones provide the N � 1 mea-

sured signals xðtÞ and let I be the number of available snap-

shots. Snapshot i is measured at time ti.
The microphones positions are denoted frngn¼1;…;N .

The locus of the candidate source positions is described by

the discrete parameter H 2 R. This region R can be either a

line, a surface, or a volume, and is discretized on a grid of L
points defined by their position fH‘g‘¼1;…;L.

Assuming that the discretization of R is fine enough,

sources can be considered located at a point on the grid. For

narrow band sources, the complex measured signals (values

of the Fourier transform of the time domain signal at a given

frequency f) can be modeled by

xðtiÞ ¼
XL

‘¼1

aðH‘Þs‘ðtiÞ þ nðtiÞ; (1)

where al ¼ aðH‘Þ is the N � 1 steering vector for a source at

the position H‘; s‘ðtiÞ is the source complex amplitude at the

instant ti (it is modeled as a random variable, and in practice,

is obtained as the Fourier coefficient at frequency f of the

sources in a time window around ti), and nðtiÞ is an additive

zero mean complex Gaussian noise assumed to be spatially

white of variance r2. The coefficients of the steering vector

a‘ are the values of the Green’s function of the propagation

medium between the position parameterized by H‘ and a

microphone at position rn. In a homogeneous medium and

assuming free propagation, Green’s function is Gðr1; r2Þ
¼ exp ð�jkjjr1 � r2jj2Þ=jjr1 � r2jj2, where k ¼ 2pf=c.

Let the N�L matrix A ¼ ½a1;…; aL� be formed by the L
steering vectors associated to the L points of the candidate

source positions grid, the signal model can be rewritten as

xðtiÞ ¼ AsðtiÞ þ nðtiÞ; (2)

where the L� 1 vector sðtiÞ ¼ ½s1ðtiÞ;…; sLðtiÞ�T contains

the amplitudes of the sources.

Under the hypothesis of independence between the

source signals and the noise, the covariance matrix can be

expressed as

C ¼ EfxðtiÞxðtiÞHg ¼ ACAH þ r2I; (3)

where C ¼ EfsðtiÞsðtiÞHg is the L�L source covariance

matrix. Estimation of C is the key point of the work pre-

sented in this paper since its diagonal describes the power of

the sources, and its off-diagonal coefficients describe the

covariance between each source.

In practice, the covariance matrix C is estimated in the

frequency domain by the sample covariance matrix using the

set of I measurements:

G ¼ 1

I

XI

i¼1

xðtiÞxðtiÞH � C: (4)

The objective of our method will be to estimate the posi-

tions, powers, and the covariances of the sources from the

matrix G.

III. STATE OF THE ART

A. Correlated sources estimation

A first estimation of the source covariance matrix is

given by (DAS-C)

ĈDAS�C ¼
1

L2
AHGA: (5)

The diagonal of ĈDAS�C is the output of the standard DAS

beamformer, and has the same limitations in terms of resolu-

tion (poor at low frequencies) and dynamics (reduced by the

presence of side lobes and aliasing at high frequencies).

In the case of a small number J of point sources

(J � L), the sparsity of the covariance matrix (it has at most

J2 non-zero coefficients) can be promoted by using a

component-wise ‘1 regularization term, driven by an regular-

ization parameter denoted k, as in the sparse spectrum fitting

method.10,16 The covariance matrix is estimated as the solu-

tion of the following optimization problem:

4874 J. Acoust. Soc. Am. 146 (6), December 2019 Chardon et al.



ĈSpSF ¼ arg min
C

jjG� ACAHjj2F þ kjjCjj1

s:t: C � 0; (6)

imposing matrix C to be positive semi-definite. Alternatively,

the CMF-C method17 jointly estimates the covariance matrix

and the noise level assuming that the rank of the covariance

matrix is low. The estimate is found as the solution of an opti-

mization algorithm fitting the covariance matrix to the data

while bounding its trace, equal to the ‘1 norm of its eigenval-

ues, as a convex surrogate for limiting its rank:

ĈCMF�C; r̂ ¼ arg min
C;r

jjG� ACAH � r2Ijj2F;

s:t: C � 0; trðCÞ � k; r2 � 0: (7)

Sparsity and low-rankedness (SpLR) can be combined

using two regularization terms,18 yielding the following

penalized optimization problem:

ĈSpLR ¼ arg min
C

jjG� ACAHjj2F þ k1jjCjj1 þ k2trðCÞ;

s:t: C � 0: (8)

These three optimisation problems are convex, and can be

solved using off-the-shelf toolboxes such as CVX,19,20 or

more specialized algorithms (e.g., simultaneous directions of

multipliers method).

However, the computational complexity of solving these

optimization problems prevents their application for large-

scale problems, where the discretization grid has, e.g., more

than �1000 elements. Estimation of the covariance matrix

by sparse spectrum fitting and CMF-C with standard convex

optimization (OðL6Þ) methods, is therefore limited to low

dimensional problems, i.e., coarse discretization of the phys-

ical space.

Yardibi et al. proposed MACS (Ref. 11) by assuming

that the rank of the covariance matrix C to be estimated is at

most Lh, an upper bound for the number of independent sour-

ces. The covariance matrix is factorized as C ¼ SSH, where

S has dimension L� Lh. By adding an additional sparsity

constraint on the coefficients of S, the following non-convex

problem is formulated:

arg min
C;Q

jj �GQH � ASjj2F s:t: jjSjj1 � b; QHQ ¼ I;

(9)

where �G is the matrix square root of a low-rank approxima-

tion of G, and Q an auxiliary matrix, introduced to simplify

the optimization problem. The authors propose an algorithm

alternating between ‘1 constrained least-squares minimiza-

tion and updates of Q, which is not guaranteed to converge

towards a global minimum. Improved MACS (IMACS)21

was recently proposed, by updating the bound b between the

iterations.

Compared to problem (8), the complexity of the estima-

tion is reduced to OðL3L3
hÞ, which makes estimation problems

of moderate dimension tractable. However, the complexity

remains too high for large scale or real time problems, as

running time on the order of minutes are announced for prob-

lems of moderate dimension (L< 1000).

B. Greedy source localization

An alternative to regularization-based sparse estimation

methods are greedy algorithms. They are known to be com-

putationally less expensive than convex optimization based

methods, at the price of reduced performances. In particular,

OMP13,14,22 has been used for several acoustical inverse

problems, such as nearfield acoustical holography,6 source

localization,23 or deconvolution approach for the mapping of

acoustic sources (DAMAS)-like deconvolution of the beam-

former output.24

In general, OMP aims at estimating a sparse solution of

the undetermined linear system of equations y ¼ Dx, where y

is the observation, D is a known dictionary with normalized

columns di (called atoms), and x is the vector of sparse coeffi-

cients to be estimated. OMP works iteratively as follows:

(1) Initialization: Iteration number k ¼ 1, residual r0 ¼ y, set

of indices corresponding to a source position S0 ¼ ;:
(2) Computation of the correlations of the residual with each

of the atoms of the dictionary, qk;l ¼ jdH
l rk�1j2:

(3) An atom (i.e., a non-zero coefficient in x) is identified by

the maximal correlation l? ¼ arg max1�l�Lqk;l:
(4) Its index is added to the set Sk ¼ Sk�1 [ fl?g.
(5) The residual is updated by projecting y on the orthogonal

subspace of the space spanned by the identified atoms:

rk ¼ y�PSk
ðyÞ, where PSð:Þ denotes the orthogonal

projector on the space spanned by the atoms ds for

s 2 Sk:
(6) k  k þ 1 and go to step 2 until a stopping criterion is

met (number of iterations, norm of the residual, etc.).

Under certain conditions on the coherence of the dictio-

nary D and the number of non-zero coefficients in x, OMP is

guaranteed to recover x exactly.14,22 Variants of OMP can

deal with structured sparsity, e.g., block sparsity,25 where

the support of x has a specific structure. In particular, block

sparsity can be applied to joint localization and characteriza-

tion of anisotropic sources26 or extended sources.5,27

IV. ORTHOGONAL LEAST SQUARES FOR
CORRELATED SOURCES LOCALIZATION

In this section, a greedy method is proposed for corre-

lated sources localization, using OLS, based on a similar

principle as OMP.

The use of this algorithm is justified by its better behavior

in presence of coherent dictionaries,15 which is the case in

source localization, when the possible source positions are

discretized with a step size smaller than the width of the main

lobe of the point spread function of the array. Moreover, the

selection criterion qk;l of OLS can be efficiently computed

using the matrix structure of the problem [see Eq. (14)].

For a set of indices S, we name AS the matrix with col-

umns al; l 2 S extracted from A.

The goal of sparse correlated sources estimation is to

decompose the data matrix G as

J. Acoust. Soc. Am. 146 (6), December 2019 Chardon et al. 4875



G � A~S
~CAH

~S
; (10)

where ~S is the set of indices of the J sources, and the positive

definite matrix ~C is the J� J covariance matrix of the sour-

ces. In particular, the power of each source can be found on

its diagonal. The data matrix can be rewritten

G �
X
i2~S

X
j2~S

aia
H
j

~Cij; (11)

showing that G is a linear combination of J2 rank-1 matrices

aia
H
j .

With the complete dictionary A of steering vectors, G

can be decomposed as

G � ACAH; (12)

where C is positive semi-definite and sparse, as it has J2

non-zero coefficients, corresponding to the J sources and

their covariances. These non-zero coefficients are given by

the coefficients of ~C.

A standard greedy recovery algorithm, such as OMP,

can be used to estimate C using the following reformulation

of the problem:

• The matrix G is vectorized as the N2 � 1 vector g.
• A dictionary of rank-1 matrices D1 is built, of dimension

N2 � L2, with vectorized rank-1 matrices ala
H
m as its

columns.
• The covariance matrix C is vectorized as c, with dimen-

sion L2 � 1.

This reparameterization yields the linear problem

g ¼ D1c. The direct application of OMP to this problem is

however computationally expensive (D1 has dimension

N2 � L2, and J2 iterations are necessary), and the particular

structure of the dictionary (a collection of rank-1 matrices) and

of the decomposition coefficients c (arranged as an L�L
matrix, they form a positive definite matrix) are not used.

A. Leveraging the structure

The estimation of the covariance matrix C can be

improved using structured sparsity, as the non-negativity of

C can be used to constrain the structure of its support.

Indeed, in addition to the equality Clm ¼ �Cml (�	 denotes

complex conjugation), the absolute value of the off-diagonal

terms is controlled by the diagonal terms: jClmj ¼ jCmlj
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CllCmm

p
. This implies that off-diagonal terms appear as

pairs, and only if the associated diagonal terms are non-zero.

The knowledge of the support of the diagonal terms is then

sufficient to predict the support of the complete matrix.

An efficient sparse recovery algorithm will thus identify

a diagonal term at each iteration k of step 2, along with the

2ðk � 1Þ off-diagonal terms describing the covariance of this

source with the previously identified sources. This selection

rule implies that only J iterations are needed. The principle

of the selection rule is illustrated on Fig. 1. At iteration 1,

the first source is identified. At iteration 2, the second source

and its covariance with the first source are identified, etc.

until all sources are located.

The OMP algorithm can be modified to take into

account structured sparsity. In particular, block structures

can be identified with block-OMP by replacing the scalar

product in step 2 of the OMP algorithm, by orthogonal pro-

jection on the space spanned by the atoms of a block.25 In

the covariance matrix case, a block is a diagonal term along

with its 2ðk � 1Þ associated off-diagonal terms. Step 2 of

OMP is replaced by

• For all l, compute the norms of the projection of the resid-

ual matrix Rk�1 on the space Ek;l spanned by amaH
l ; ala

H
m;

and ala
H
l for m 2 Sk�1: qk;l ¼ jjPEk;l

ðRk�1Þjj2F.

The matrix structure can be efficiently leveraged by

using the OLS algorithm. OLS is similar to OMP, with steps

2 and 3 replaced by the maximization of the projection of

the signal to be decomposed in the space spanned by the can-

didate atoms and the previously identified atoms. OLS is

obtained by replacing step 2 of OMP algorithm by

• compute the norms of the projection of the residual on the

space Fk;l spanned by anaH
m, for n;m 2 Sk;l ¼ ðSk�1 [ flgÞ:

qk;l ¼ jjPFk;l
ðRk�1Þjj2F.

In this case, simple algebraic manipulations show that

the orthogonal projection of a matrix M in the space FS

spanned by the rank-1 terms ala
H
m for l;m 2 S is

PFS
ðMÞ ¼ A?S A?H

S MA?S A?H
S ; (13)

where A?S is the matrix of an orthogonal basis for the

space spanned by the al; l 2 S. Indeed, PFS
ðMÞ is in the

FIG. 1. (Color online) Principle of the greedy source identification algorithm: at each step, a source (diagonal term) is identified along the covariance between

itself and the previously identified sources.
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space spanned by the rank-1 terms ala
H
m and hPFS

ðMÞ
�M;PFS

ðMÞi ¼ 0, with hA;Bi ¼ trðAHBÞ:
The selection criterion at iteration k is

qk;l ¼ jjPFk;l
ðGÞjj2F; (14)

¼ jjA?Sk;l
A?H

Sk;l
GA?Sk;l

A?H
Sk;l
jj2F; (15)

¼ jjA?H
Sk;l

GA?Sk;l
jj2F: (16)

The CMF-OLS algorithm for covariance matrix estima-

tion then writes

(1) Initialization: k ¼ 1, residual R0 ¼ G, set of indices

S0 ¼ ;:
(2) Projections of the residual on the blocks are computed,

qk;l ¼ jjPFk;l
ðRk�1Þjj2F:

(3) An additional source is identified by the maximal norm

of the projection l? ¼ arg maxlqk;l:
(4) Its index is added to the set Sk ¼ Sk�1 [ fl?g:
(5) The residual is updated by orthogonally projecting G on the

space spanned by the identified atoms: Rk ¼ G�PFk
ðGÞ:

(6) k  k þ 1 and go to step 2 until a stopping criterion is

met.

After K iterations, the OLS estimation of the K�K
covariance matrix ~C is given by the solution of the least-

squares problem:

~̂COLS ¼ arg min
C

jjG� ASK
CAH

SK
jj2F; (17)

with explicit solution ~̂COLS ¼ A
†
SK

GA
†H
SK

where 	† denotes

the Moore-Penrose pseudo-inverse. The estimate ĈOLS of the

complete covariance matrix C is then given by setting

ĈOLS;lilj ¼ ~̂COLS;ij; where lk is the index of the atom identified

at iteration k, 1 � k � K. Coefficients at locations not

selected by the algorithm have value 0.

The main computational burden is the computation of

the selection criterion. This criterion can be efficiently com-

puted the following way. The matrix A?Sk;l
is obtained by

concatenating A?Sk�1
with the normalized orthogonal projec-

tion ~al of al on the orthogonal of the space spanned by the

columns of A?Sk�1
. The criterion then writes

jjA?H
Sk;l

GA?Sk;l
jj2F ¼

A?H
Sk�1

~aH
l

 !
G A?Sk�1

~al

� ������
�����

2

F

; (18)

¼ jjA?H
Sk�1

GA?Sk�1
jj2Fþ; (19)

2jj~aH
l GA?Sk�1

jj22 þ j~a
H
l G~alj2: (20)

The first term being constant with respect to l, only the last

two terms have to be computed.

B. Computational complexity

The computational complexity of the algorithm depends

on the number of sensors N, the discretization size L and the

number of iterations K, are such that K � N � L. The com-

putational complexity of one iteration of OLS is governed

by

• the construction of the orthogonal matrices A?Sk;l
, by pro-

jection and normalization of the al: O(LkN)
• and the computation of the norm of the projection using

the two last terms of Eq. (20): OðLN2Þ.

As K � N, the total cost is OðLN2KÞ. We note that the

complexity is linear with respect to the size of the grid L.

The memory usage of CMF-OLS is dominated by the size of

the dictionary LN.

As a comparison, MACS has a time complexity in L3,

and the time complexity of DAS-C is OðL2NÞ, quadratic in

TABLE I. Simulation (five sources). Position and power of the sources: true

values and estimations by CMF-OLS. Powers are given with reference to

the most powerful source at x¼ 0.0 m.

True values Source 1 Source 2

Positions [m] �0.8 0.0 0.9 �0.3 0.5

Power [dB]—group 1 �7.95 0.00 �13.98 �Inf �Inf

Power [dB]—group 2 �Inf �Inf �Inf �10.46 �1.94

Estimation by CMF-OLS Source 1 Source 2

Positions [m] �0.79 0.00 0.89 �0.30 0.50

Power [dB]—group 1 �7.78 0.07 �13.59 �36.70 �334.59

Power [dB]—group 2 �32.52 �37.16 �27.10 �10.32 �1.55

FIG. 2. (Color online) Simulations (5

sources)—source covariance matrix. In

both representations, the powers of the

sources are found on the diagonal, off-

diagonal terms indicate correlation

between sources. Left: Output of DAS-

C in dB, the actual sources are superim-

posed, crosses and circles denotes the

two source groups. Right: Covariance

matrix estimated by CMF-OLS, the

radius of the disks are proportional to

the absolute value of the coefficients.
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the size of the grid. The memory footprint of MACS and

DAS-C is at least the size of the covariance matrix L2.

V. SEPARATION OF THE SOURCES

Once the covariance matrix is estimated, the different

sets of correlated sources can be identified. First, the number

of groups of correlated sources is estimated by computing

the singular values of the covariance matrix. The number of

groups Ng is the number of singular values higher than the

noise floor, which can be estimated as the order where singu-

lar values exhibit a sharp decay.

The information on their spatial shape is included in the

singular vectors of the estimated covariance matrix. The sin-

gular vector associated to a group describes the relative level

of the sources at their respective locations. Combined with

the corresponding singular values, respective powers of the

sources can be estimated in each group.

However, because of the presence of noise, the esti-

mated singular vectors cannot be the actual singular vectors

of the covariance matrix, and are combinations of several

spatial shapes for sources associated with similar singular

values. A simple algorithm is proposed to disentangle the

sources, based on the assumption that the spatial supports of

the sources are disjointed. With vk the kth singular vector of
~̂COLS for k � K, assumed to be normalized, and vkl its coeffi-

cients, the source shapes hk (i.e., spatial spread of the

sources, and their amplitude as a function of the position)

are estimated by the following algorithm:

(1) k ¼ 1,

(2) Compute l? ¼ arg maxlj
PK

n¼1 vnlj2,

(3) Let hk ¼
PK

n¼1 �vnl?vn=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

n¼1 jvnl? j2
q

,

(4) Replace the K vectors vn by their projections on the

space orthogonal to sk,

(5) k  k þ 1 and go to step 2 until k ¼ Ng,

where �	 denotes complex conjugation. The algorithm is

supported by the following interpretation: the vectors vk

form an orthogonal basis of the space spanned by the shape

vectors hk, itself an orthogonal basis as their supports are

disjointed. Each step of the algorithm rotates the basis of

vectors vk such that one of the vectors is equal to one of the

shape vectors. The algorithm is then iterated in the space

orthogonal to this vector.

The estimated covariance matrix is then orthogonally

projected in the space spanned by the rank-1 matrices hkhH
k ,

with decomposition coefficients ak. The final estimation of

the covariance matrix is

~̂C ¼
XNg

i¼1

aihih
H
i : (21)

From this decomposition, one can

• compute the power emitted at each location of space:

P̂l ¼
PNg

k¼1 akjhklj2,
• or analyze the shape of a unique source by using its rank-1

description akhkhH
k :

The computational complexity of this step is dominated

by the singular value decomposition (SVD) of the matrix
~̂COLS, in OðK3Þ, itself dominated by the complexity of the

OLS algorithm.

VI. SIMULATIONS

The method is demonstrated on a simple case by simu-

lating a linear array, and locating correlated sources on a line

parallel to the array at a distance of 5 m. The array is com-

posed of N¼ 19 sensors spaced by a half wavelength. Free-

field propagation is considered. Two groups of coherent

sources are considered, with, respectively, 2 and 3 narrow

band sources emitting at 3500 Hz. Locations and powers of

the sources are given in Table I. The SNR is set to 0 dB and

I¼ 500 time samples are collected. The 1D region of interest

FIG. 3. (Color online) Simulations (5 sources)—position and power. Top:

estimation by CMF-OLS, K¼ 5. Bottom: estimation by IMACS.

FIG. 4. Simulations (5 sources). Left:

Energy of the residual of the CMF-

OLS. Right: Singular values of the

covariance matrix.
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of the sources is discretized with a 5 mm step, such that

L¼ 400 grid points are considered.

The estimation of the source covariance matrix provided

by the DAS-C beamformer is pictured on Fig. 2. Its diagonal,

the output of the standard DAS beamformer, is plotted on

Fig. 3. We note in particular that the two less powerful sour-

ces cannot be identified by DAS beamforming, as they are

below the level of the sidelobes of more powerful sources.

Correlations between sources are represented by the off-

diagonal coefficients.

The coefficients of the covariance matrix estimated by

CMF-OLS are pictured on Fig. 2. One can note that the two

groups of correlated sources can be easily identified from

this estimation while it was not possible with the DAS-C

estimation. The estimated positions and powers of the sour-

ces estimated by CMF-OLS are given in Table I, and plotted

on Fig. 3. Positions and powers of the five sources are esti-

mated correctly, even for the sources that cannot be identi-

fied by beamforming.

The source powers estimated by IMACS are plotted on

Fig. 3. As the value proposed for the regularization parame-

ter in Ref. 11 did not yield accurate results, it was set manu-

ally. The rank of the covariance matrix is assumed to be Lh

¼ 2, and 50 iterations are used. The weaker sources are not

estimated accurately by IMACS. Moreover, for some sour-

ces, the power is spread over contiguous grid points, making

the estimation of the power difficult. This is a well known

phenomenon in sparse deconvolution28 that cannot be

avoided by refining the discretization.

The energy of the residual before each step of CMF-

OLS is plotted on Fig. 4. The number of sources is estimated

by the location of the discontinuity in the decay of the

energy, here at K¼ 5 iterations. The singular values of the

estimated covariance matrix with five iterations are plotted

on the same figure, showing that the sources can be sepa-

rated in two correlated groups.

Computation times for CMF-OLS are 0.003 s, and 22.7 s

for IMACS. For this set of data, the proposed method is about

10 000 times faster than the IMACS algorithm which is

known as one of the fastest approaches for source covariance

matrix estimation. The algorithm is implemented in MATLAB

R2018b, and is run on a laptop equipped with an Intel Core

i7–7820HQ CPU @ 2.90 GHz� 8 CPU and 16 GB memory.

Results on the mean squared error (MSE) of the locali-

zation (separately for the two sources) and estimation of the

source covariance matrix (averaged over all coefficients) are

given in Fig. 5. Here, only group 2 is considered. CMF-OLS

exhibits the best localization and covariance estimation per-

formances. MSE do not converge to 0 as the SNR improves

because of a bias introduced by the presence of multiple

source. In the case of IMACS, a further bias on the covari-

ance is introduced by the regularization.

VII. EXPERIMENTAL VALIDATION

The method is now tested experimentally in an anechoic

chamber. The following experiments make use of the same

sources built out of baffled broadband omnidirectional loud-

speakers (Visaton-BF32—[150 Hz, 20 kHz]). These sources

emit a 10 s long zero mean white Gaussian noise.

A. Setup

Two different acoustic arrays are implemented. They use

the same acoustic sensors: MEMS digital microphones

(INVENSENSE–INMP441) with a 26 dBFS sensitivity (1 kHz,

94 dBSPL) and a flat response in the band [150 Hz, 15 kHz].

The first array counts 32 elements irregularly spaced on a

straight line, 1.36 m long, with an average step size of 45 mm.

The second array counts 128 elements distributed along

16 linear rays. The eight microphones on a ray are spaced

regularly with a 17 cm step size and the origins of the 16

rays follow a pseudo random distribution.

FIG. 5. Simulations (2 sources)—

Mean squared error of the localization

of the two sources (left), and of the

estimation of their covariances (right)

in function of the SNR.

FIG. 6. (Color online) Experimental

setup. Top: Acoustical sources. Bottom:

Positions of the array microphones.
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The second microphone array and the sources are pic-

tured on Fig. 6. The sources and the microphones are

located, respectively, in two parallel planes, at a distance

d¼ 4.3 m. This setup is depicted on Fig. 7.

The microphone signals are sampled at 50 kHz and ana-

lyzed by short-time Fourier transform, with a 2048 sample

Hann window (41 ms duration and 75% overlap).

B. Experiment 1: Linear array

The linear array is used in this experiment. Four sources

are located at a 5.18 m distance. They are correlated by pairs.

The source space consists of a parallel 2 m long straight line

with a 5 mm step (L¼ 400 points). Results are given for fre-

quency f¼ 11 kHz.

The output of the DAS beamforming is pictured on

Fig. 8. The power of the weaker source is below the level

of a more powerful source, and cannot be located. On the

same figure, crosses and circles indicates the sources found

by CMF-OLS. They are correctly grouped, and their loca-

tion is close to the actual locations of the source (dashed

lines). The number of iterations, K¼ 5, and the number of

groups, J¼ 2 are obtained from the decay of the residual

energy and the singular values of the covariance matrix.

The bottom part of the figure shows the sources location

and power estimated by IMACS. Similar results to CMF-

OLS are obtained, with a computation time of 24.3 s, com-

pared to 0.06 s for CMF-OLS.

C. Experiment 2: 2 D array, uncorrelated sources

The localization of uncorrelated sources is tested first.

The sources are located in a parallel plane, at a distance

d¼ 4.3 m. The region of interest is a 2 m �4 m rectangle dis-

cretized over M ¼ 400� 200 ¼ 8e4 points. Results are

given for frequency f¼ 2.2 kHz.

The output of the DAS beamforming is pictured on

Fig. 9. Source 4 cannot be identified as it is below the level

of the mainlobe of source 2.

The sources identified by CMF-OLS are superimposed

on the same image. The number of iterations (K¼ 4) and

number of source groups (4) are chosen according to the

residual energy decay and the singular values of the esti-

mated covariance matrix, see Fig. 10.

The computation time is here 1.4 s. As the complexity

of the MACS method is proportional to L3, the computation

times for MACS would be in the order of several years. The

size of the output of DAS-C is L2, more than 25 GB as single

floats, larger than the memory of the computer used for the

numerical applications.

D. Experiment 3: 2D array, pairs of correlated sources

In the next experiment, the same setup is used, with

two pairs of correlated sources (1–2, 3–4). As in the previ-

ous experiment, source 4 cannot be identified by DAS

beamforming.

For CMF-OLS, the residual energy decay indicates four

sources as above. Here, two groups are identified using the

singular values of the estimated covariance matrix, superim-

posed on the output of the beamformer on Fig. 11.

The estimated covariances with sources are pictured

on Fig. 12. The covariances are given by the column of the

estimated covariance matrix ~C associated to a given source.

In the case of source 1, both DAS-C and OMF-CLS yield

correct estimation of the covariances, as source 1 is corre-

lated with source 2 only. The covariances estimated by

FIG. 7. Experimental setup.

FIG. 8. (Color online) Experimental results, linear array. Top: Two pairs of

correlated f¼ 11 kHz. The sources identified by CMF-OLS are superimposed

over the output of the standard beamformer. Bottom: Estimation by IMACS.

FIG. 9. (Color online) Experimental results with four uncorrelated sources

at f¼ 2.2 kHz. The sources identified by CMF-OLS (marker size propor-

tional to the power of the source) are superimposed over the output of the

standard beamformer, in dB.
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DAS-C for source 4 are however inexact, as source 4 is esti-

mated to be correlated with all four sources. This is

explained by the fact that source 4 is in the main lobe of

source 3, itself correlated with source 1. CMF-OLS does not

find significant correlation with source 3 only.

E. Experiment 4: 2 D array, sources with reflections

Finally, the identification of reflections is tested. A

reflector is set up in the anechoic room, and uncorrelated

sources (3 and 4) are used. The sources and their reflections

are expected to be strongly correlated, and the number of

correlated blocks is the number of actual sources. The scan

area is augmented to include points in the reflected, virtual

space, with dimension 7 m� 1:5 m, and L ¼ 1:05e5 points.

The frequency is here f¼ 2.93 kHz, and the computation

time is 1.74 s. The four sources located by OLS are correctly

identified as two pairs of correlated sources, one real source

and its reflection, see Fig. 13.

VIII. CONCLUSION

In this paper the CMF-OLS method is proposed for the

estimation of the source covariance matrix which provides

simultaneously location, power, and covariances of acoustic

sources. The advantages of this approach compared to stan-

dard methods are its ability to distinguish correlated sources.

Simulations and experimental results are presented that illus-

trate this capacity.

The proposed method is a greedy approach based on the

OLS algorithm. Its advantage lies in a very low numerical

complexity which is linear with respect to the number of

grid points in the scanned source domain. Consequently it is

drastically faster than similar methods based on the optimi-

zation of a regularized criterion. Numerical examples show

that the computing time is divided by a factor 1000 at least.

To our knowledge, it is the first method for source covari-

ance estimation that can deal with large numbers of grid

points, making it usable in a wide range of applications.

Another advantage of the CMF-OLS method upon the regu-

larization approach, is that it does not require the tuning of

any parameter to get the optimal solution.

Finally experimental results in free field and semi-free

field were presented, which prove that the accuracy of CMF-

OLS outperforms those of regularized approaches such as

the MACS or IMACS methods, in terms of both localization

and power estimation. Extension to reverberant settings will

FIG. 10. Experimental results with

uncorrelated (exp. 2) and correlated

sources (exp. 3). Left: Energy of the

residual before each step of the CMF-

OLS algorithm. Right: Singular values

of the estimated covariance matrix for

K¼ 4.

FIG. 11. (Color online) Experimental results with two pairs of correlated

sources at f¼ 2.2 kHz. The sources identified by CMF-OLS are superim-

posed over the output of the standard beamformer, in dB.

FIG. 12. (Color online) Experimental results. Covariances estimated by

DAS-C (absolute value in dB) and CMF-OLS with one source. Top: source

4, bottom: source 1. Marker size proportional to the covariance between the

source and source 1 or 4.

FIG. 13. (Color online) Experimental results with two sources and their

reflections at f¼ 2.93 kHz. The sources identified by CMF-OLS are superim-

posed over the output of the standard beamformer in dB.
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be considered, either by adapting the dictionary, or consider-

ing image sources as source correlated to the actual sources.

1H. Krim and M. Viberg, “Two decades of array signal processing research:

The parametric approach,” IEEE Signal Process. Mag. 13(4), 67–94

(1996).
2J. Antoni, T. L. Magueresse, Q. Leclère, and P. Simard, “Sparse acoustical

holography from iterated Bayesian focusing,” J. Sound Vib. 446, 289–325

(2019).
3N. Chu, A. Mohammad-Djafari, and J. Picheral, “Robust Bayesian super-

resolution approach via sparsity enforcing a priori for near-field aeroa-

coustic source imaging,” J. Sound Vib. 332(18), 4369–4389 (2013).
4A. Xenaki, P. Gerstoft, and K. Mosegaard, “Compressive beamforming,”

J. Acoust. Soc. Am. 136(1), 260–271 (2014).
5E. Fernandez-Grande and L. Daudet, “Compressive acoustic holography

with block-sparse regularization,” J. Acoust. Soc. Am. 143(6), 3737–3746

(2018).
6G. Chardon, L. Daudet, A. Peillot, F. Ollivier, N. Bertin, and R.

Gribonval, “Near-field acoustic holography using sparse regularization

and compressive sampling principles,” J. Acoust. Soc. Am. 132(3),

1521–1534 (2012).
7D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal reconstruc-

tion perspective for source localization with sensor arrays,” IEEE Trans.

Signal Process. 53(8), 3010–3022 (2005).
8A. Das, W. S. Hodgkiss, and P. Gerstoft, “Coherent multipath direction-

of-arrival resolution using compressed sensing,” IEEE J. Ocean. Eng.

42(2), 494–505 (2017).
9A. Das, “Deterministic and Bayesian Sparse signal processing algorithms

for coherent multipath directions-of-arrival (DOAS) estimation,” IEEE J.

Ocean. Eng. 44, 1150–1164 (2018).
10J. Zheng and M. Kaveh, “Sparse spatial spectral estimation: A covariance

fitting algorithm, performance and regularization,” IEEE Trans. Signal

Process. 61(11), 2767–2777 (2013).
11T. Yardibi, J. Li, P. Stoica, N. S. Zawodny, and L. N. Cattafesta, “A

covariance fitting approach for correlated acoustic source mapping,”

J. Acoust. Soc. Am. 127(5), 2920–2931 (2010).
12S. Chen, S. A. Billings, and W. Luo, “Orthogonal least squares methods

and their application to non-linear system identification,” Int. J. Control

50(5), 1873–1896 (1989).
13Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching

pursuit: Recursive function approximation with applications to wavelet

decomposition,” in Proceedings of the 27th Annual Asilomar Conference
on Signals, Systems, and Computers (1993), pp. 40–44.

14J. A. Tropp and A. C. Gilbert, “Signal recovery from random measure-

ments via orthogonal matching pursuit,” IEEE Trans. Inf. Theory 53(12),

4655–4666 (2007).
15C. Soussen, R. Gribonval, J. Idier, and C. Herzet, “Joint K-step analysis of

orthogonal matching pursuit and orthogonal least squares,” IEEE Trans.

Inf. Theory 59(5), 3158–3174 (2013).
16J. W. Paik, W. Hong, J.-K. Ahn, and J.-H. Lee, “Statistics on noise covari-

ance matrix for covariance fitting-based compressive sensing direction-of-

arrival estimation algorithm: For use with optimization via regularization,”

J. Acoust. Soc. Am. 143(6), 3883–3890 (2018).
17T. Yardibi, J. Li, P. Stoica, and L. N. Cattafesta, “Sparsity constrained

deconvolution approaches for acoustic source mapping,” J. Acoust. Soc.

Am. 123(5), 2631–2642 (2008).
18W. Xiong, J. Picheral, S. Marcos, and G. Chardon, “Sparsity-based locali-

zation of spatially coherent distributed sources,” in 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Shangai, China (2016).

19M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex pro-

gramming, version 2.1,” http://cvxr.com/cvx (2014).
20M. Grant and S. Boyd, “Graph implementations for nonsmooth convex

programs,” in Recent Advances in Learning and Control, edited by V.

Blondel, S. Boyd, and H. Kimura, Lecture Notes in Control and

Information Sciences (Springer-Verlag, Berlin, 2008), pp. 95–110.
21Y. Li, M. Li, D. Yang, and C. Gao, “Research of the improved mapping of

acoustic correlated sources method,” Appl. Acoust. 145, 290–304 (2019).
22J. A. Tropp, “Greed is good: Algorithmic results for sparse approx-

imation,” IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004).
23A. Peillot, F. Ollivier, G. Chardon, and L. Daudet, “Localization and identifi-

cation of sound sources using ‘compressive sampling’ techniques,” in 18th
International Congress on Sound and Vibration, Rio de Janeiro, Brazil (2011).

24T. Padois and A. Berry, “Orthogonal matching pursuit applied to the

deconvolution approach for the mapping of acoustic sources inverse prob-

lem,” J. Acoust. Soc. Am. 138(6), 3678–3685 (2015).
25Y. C. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals:

Uncertainty relations and efficient recovery,” IEEE Trans. Signal Process.

58(6), 3042–3054 (2010).
26G. Chardon, “A block-sparse MUSIC algorithm for the localization and

the identification of directive sources,” in 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
Florence, Italy (2014), pp. 3953–3957.

27M. R. Bai, C. Chung, and S.-S. Lan, “Iterative algorithm for solving

acoustic source characterization problems under block sparsity con-

straints,” J. Acoust. Soc. Am. 143(6), 3747–3757 (2018).
28V. Duval and G. Peyr�e, “Sparse regularization on thin grids I: The lasso,”

Inverse Probl. 33(5), 055008 (2017).

4882 J. Acoust. Soc. Am. 146 (6), December 2019 Chardon et al.

https://doi.org/10.1109/79.526899
https://doi.org/10.1016/j.jsv.2019.01.001
https://doi.org/10.1016/j.jsv.2013.02.037
https://doi.org/10.1121/1.4883360
https://doi.org/10.1121/1.5042412
https://doi.org/10.1121/1.4740476
https://doi.org/10.1109/TSP.2005.850882
https://doi.org/10.1109/TSP.2005.850882
https://doi.org/10.1109/JOE.2016.2576198
https://doi.org/10.1109/JOE.2018.2851119
https://doi.org/10.1109/JOE.2018.2851119
https://doi.org/10.1109/TSP.2013.2256903
https://doi.org/10.1109/TSP.2013.2256903
https://doi.org/10.1121/1.3365260
https://doi.org/10.1080/00207178908953472
https://doi.org/10.1109/TIT.2007.909108
https://doi.org/10.1109/TIT.2013.2238606
https://doi.org/10.1109/TIT.2013.2238606
https://doi.org/10.1121/1.5042354
https://doi.org/10.1121/1.2896754
https://doi.org/10.1121/1.2896754
http://cvxr.com/cvx
https://doi.org/10.1016/j.apacoust.2018.10.009
https://doi.org/10.1109/TIT.2004.834793
https://doi.org/10.1121/1.4937609
https://doi.org/10.1109/TSP.2010.2044837
https://doi.org/10.1121/1.5042221
https://doi.org/10.1088/1361-6420/aa5e12

	s1
	l
	n1
	s2
	d1
	d2
	d3
	d4
	s3
	s3A
	d5
	d6
	d7
	d8
	d9
	s3B
	s4
	d10
	d11
	d12
	s4A
	d13
	f1
	d14
	d15
	d16
	d17
	d18
	d19
	d20
	s4B
	t1
	f2
	s5
	d21
	s6
	f3
	f4
	s7
	s7A
	f5
	f6
	s7B
	s7C
	s7D
	f7
	f8
	f9
	s7E
	s8
	f10
	f11
	f12
	f13
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28

