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ABSTRACT

This paper describes a method to obtain a perceptually
relevant sparse representation of a sound signal. Based on
matching pursuit (MP) and recent psychoacoustic data on
time-frequency masking measured with Gabor atoms, a per-
ceptual matching pursuit (PMP) algorithm is proposed. To
obtain a good match between the masking model and the sig-
nal representation, a dictionary of Gabor atoms with variable
sizes is chosen for MP. In the proposed method, the signal
is first decomposed using MP and the masking model is ap-
plied on the resulting set of atoms. This allows for isolating
the masked components from the residual. Experimental re-
sults show that exploiting time-frequency masking allows to
remove more atoms than using only spectral masking. Ad-
ditionally, accounting for masking effects between atoms of
different sizes and at different times allows for sparser rep-
resentations. The objective evaluation of the proposed PMP
algorithm indicates imperceptible distortions.

Index Terms— matching pursuit, auditory masking,
sparse representations.

1. INTRODUCTION

This study addresses the combination of sparse representa-
tion of sounds and perceptual masking models. Sparse rep-
resentations extracts relevant information from the signal and
describes it with a minimal amount of data. In the context
of audio processing, it is desirable that these representations
take human auditory perception into account and allow recon-
struction, not with a low error (say, error in the /5 norm), but
with a controlled amount of perceived distortion (see e.g. [1]).

In the context of signal representation, time-frequency
(TF) representations like the Gabor or Wavelet transforms
have become standard tools. They allow to decompose sig-
nals into a set of elementary functions called “TF atoms” with
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good TF localization and achieve perfect reconstruction if the
transform parameters are chosen appropriately (e.g., [2]).
The set of TF atoms generally consists of scaled, trans-
lated and modulated versions of a single window function
g(t) € L%(R), where L?(R) is the Hilbert space of complex
valued functions. In other words, the generation of the set fol-
lows a fixed preset rule and does not necessarily adapt to the
signal structures or the auditory perception (note, however,
that auditory-based TF transforms have been proposed in,
e.g., [3,4]). Moreover, TF transforms usually yield redundant
representations. Methods based on sparsity, such as matching
pursuits (MPs), use this redundancy to decompose signals
into a set of functions that are iteratively selected among a
large dictionary of waveforms [5]. MPs yield sparse signal
representations that allow interpreting the signal structures.
MPs have found many applications in audio processing, espe-
cially in parametric audio coding (e.g., [6,7]). To account for
auditory perception in MP, psychoacoustic criteria (e.g., hear-
ing threshold in quiet, auditory masking or loudness models)
can be included in the process; this is usually referred to as
“perceptual MP” (PMP, see Sec. 2).

In this work, we propose a new PMP algorithm that com-
bines a dictionary of Gabor atoms with various window sizes
and a matched TF masking model for Gabor atoms [8]. To
isolate the masked components from the residual, we ap-
ply the masking model after MP. We show that using a TF
masking model allows to eliminate more atoms than using
only a simple spectral masking model. The TF model is also
extended to the case of multiple atom lengths, allowing to
combine dictionaries with various atom lengths and auditory
masking.

2. PRIOR WORK

The general idea of PMP is the following: Adaptively find
the perceptually most significant (i.e., audible) components in
the signal to obtain a perceptually relevant sparse representa-
tion. This is usually achieved by including a masking model
in MP. Most PMP algorithms exploit only spectral masking
[6,9-13]. TF masking is exploited in [14, 15] using mod-



els that are based on a simple superposition of spectral and
temporal masking functions measured for stimuli that do not
have good TF localizations (typically, long-lasting sinusoids
or noise bands). In [8], it was shown that such simple mod-
els do not provide an accurate representation of the measured
TF masking function for TF atoms. Thus, it is possible that
the amount of components identified as “masked” in current
PMPs is underestimated. Moreover, in most PMPs the psy-
choacoustic criteria are considered at each iteration of MP.
Consequently, the masked components are mixed with the
residual. For signal analysis purposes, a separation of the
original signal into a relevant, masked and residual part is
of high interest. To isolate the masked components from the
residual, the selection of components has to be performed af-
ter MP [6,11].

In most of the cited approaches, the MP algorithm was
applied separately on short-length frames. It is however, as
shown in [6], more efficient to use MP with a dictionary based
on MDCT of multiple lengths. In [6], a masking model was
considered, but applied only between atoms sharing the same
length. We will follow a similar approach with Gabor atoms
of various lengths and show that applying the masking model
between atoms of different sizes yields sparser representa-
tions.

3. PROPOSED METHOD

The basic idea of our method is the following: First, perform
a MP decomposition using a redundant dictionary of Gabor
atoms. Second, apply a TF masking model on the set of atoms
selected by MP to keep only the audible atoms.

3.1. Preliminaries

The relationship between the linear and the psychoacoustic
ERB frequency scale is given by [16]

ERBpum(v) = 9.2651n (1 + )

1% )
Wlth 14 expressed in HZ.

3.2. Time-frequency masking model

To accurately predict the audibility of each atom in a TF de-
composition, it is important to have a TF masking model that
is valid for such atoms. In [8], psychoacoustic experiments
were conducted using Gaussian TF atoms of the form

s;(t) = sin (27r1/z-t + %) e (T 2)

where v; is the center frequency (in Hz), I" is a shape factor
that controls the duration and bandwidth of s;(¢) and the 7/4
phase shift allows maintaining the energy constant V v;. For
all signals I" was fixed at 600 s~—!. The amounts of masking
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Fig. 1. Mean TF masking data plotted in the TF plane [8] for
a masker at level 60 dB.

(AM, in dB) were measured for several masker-target combi-
nations

SAF,AT(t) = 81\4(t) + ST(t — AT)

with AF = vp — vyy. The frequency of the masker signal
s (t) was fixed at vy = 4000 Hz and v varied from 2521
to 7835 Hz. Using Eq. (1), the v values correspond to AF' €
[—4; 6] ERB units relative ERByym(var). AT varied from
0 to 30 ms. The mean results are plotted in Fig. 1. These
results can be described by the following model

AM (AT, AF) = C(AF) e AT/AAD) 3)

where C' describes the spectral spread of masking at AT =
0 and A is a time constant that characterizes the frequency-
dependent temporal decay of forward masking. Based on
polynomial fits of the experimental data, C' and A are defined
by [8]

cwn-{ HATIRY ¥ AFsh
and
+0.43 AF3 + 34AF% +
AMAF) = J—rgicl)ﬁfFJg ESFT).75 AF? — Arso
—3.2AF +8.8 if AF>0

Noteworthy, in Eq. (3), AF is defined in ERB units and AT
in ms.



length Nppr | shift
128 (3 ms) 8192 64
256 (6 ms) 8192 64
512 (11 ms) 8192 64
1024 23 ms) | 8192 64
2048 (46 ms) | 8192 64

Table 1. Parameters (in samples) used for the construction of
the dictionary in MPTK.

3.3. Time-frequency (Gabor) dictionary for MP

To obtain a perfect match between the TF masking model and
the TF representation, we opt for a dictionary of complex TF
atoms (also called Gabor dictionary) of the form

2 o
ga,u,F(t) = Ke_ﬂ(r(t_a)) e2imvt )

where K is a normalization constant. Following [6], we use
Gabor atoms with multiple window lengths. This allows a
sparser representation of the signal, as such a dictionary can
represent both harmonic components and transients in an ef-
ficient way.

3.4. Algorithm formulation

The MP algorithm builds a sparse representation of the signal
s in the following way:

1. initialize the residual 7y = s and build the dictionary
using a set of parameters (a;, v, ;).

2. compute the correlations between the residual and the
atoms of the dictionary, ¢; = | < 7, 9,0y, > |

3. select the atom maximizing the correlation and remove
it from the residual, 7,11 = r,— < Ty, Ga, 0.0 >
Gay,v, -

4. repeat from 2. until the number of iterations N is

reached.

The output of MP is a list of parameters (length, fre-
quency, amplitude and phase) of the atoms identified by the
algorithm. The signal can be re-synthesized by summing
these atoms. Once the list of identified atoms is obtained, the
atoms are ordered by decreasing amplitude and the masking
model in Eq. (3) is applied to each atom starting with the
greatest amplitude. All atoms with a length equal or smaller
than that of the atom considered as “masker” and below the
masking level are removed from the set. Since the masking
model is applied after MP, we can use a standard implemen-
tation of MP such as MPTK [17].

% atoms

removed | PMPF1 | PMPF2 | PMPTF1 | PMP TF 2

maderna 35 46 40 51
vega 36 53 54 66

Table 2. Percentages of atoms removed from the set of atoms
identified by MP after 80 000 iterations for each variant of
PMP.

4. RESULTS

To evaluate the performance of the proposed method, we
ran the PMP algorithm on two musical excerpts sampled at
44.1 kHz: the piano concerto from Bruno Maderna (length =
3 s) and Suzanne Vega (4 s). The parameters used in MPTK
for the MP decomposition are listed in Tab. 1. The total
number of iterations N was fixed at 80 000. This number
ensures a perfect signal reconstruction using MP (SNR =
-78 dB for vega, -37 dB for maderna). Moreover, to evaluate
the contribution of temporal masking, we tested four variants
of PMP. In the first variant, PMP F 1, only spectral masking
(ie., AM(0,AF), see Eq. (3)) between atoms sharing the
same length was exploited, as was done in [6]. In the sec-
ond variant, PMP F 2, spectral masking across lengths was
considered. More specifically, each atom with a duration I';
can mask atoms with durations I'y; < I';. Similarly, the
mono- vs. across-length effect was investigated in the two
other variants, PMP TF 1 and PMP TF 2, but using the full
TF masking model in Eq. (3). The results are shown in Fig. 2,
which displays the number of nonzero atoms as a function
of N for MP (dotted line), PMP F 1 (gray dashed line),
PMP F 2 (black dashed line), PMP TF 1 (gray solid line)
and PMP TF 2 (black solid line). Table 2 lists percentages of
atoms removed from the set of atoms identified by MP after
80 000 iterations for each variant of PMP. Including temporal
masking allowed to remove 5-10% more atoms than using
only spectral masking (PMP TF 2 vs. PMP F 2). Accord-
ingly, the results in [14] showed that the amount of selected
components can be reduced by about 5% if temporal masking
is exploited. Interestingly, by allowing long atoms to mask
shorter ones, the amount of selected atoms could be reduced
by more than 10% (PMP TF 2 vs. PMP TF 1).

In Figure 3, the amplitude of the atoms selected by MP
are plotted. The circles indicate the atoms removed using
PMP TF 2. These results show that the TF masking model
removes atoms that are identified in the first iterations of the
algorithm.

The quality of the approximations was assessed using the
PEMO-Q model [18]. The results are given in Tab. 3 for the
sparse approximation given by MP and the result of the TF
masking model applied to this representation. Applying the
masking model degrades slightly the quality but, in any case,
the “Objective Difference Grade” (ODG) values are all be-
tween 0 and -1, i.e., between imperceptible and perceptible
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Fig. 2. Number of nonzero atoms as a function of N for MP
and the four PMP variants for (a) B. Maderna and (b) S. Vega.

but not annoying, according to [18].

Example soundfiles (results of MP with and without
masking, as well as the residuals and the masked compo-
nents) are accessible at
http://www.kfs.oeaw.ac.at/ICASSP2014_PMP.

5. CONCLUSIONS

In this paper, we demonstrated the combination of a sparse
representation of sounds based on Gabor dictionaries and a
TF masking model. Compared to previous work, we show
that considering the masking between atoms of different sizes
and at different times yields sparser representations.

Possible improvements to this work include the use of
the ERBLET transform [4], a transformation adapted to per-
ception, to generate the dictionaries, and a refined masking
model to take the additivity of masking into account for
multiple maskers. Finally, as the sparse representation and
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Fig. 3. Linear amplitudes of the atoms in MP as a function
of N for maderna (black curve) and svega (gray curve). Cir-
cles indicate atoms removed using PMP TF 2. For clarity, the
curve for maderna was shifted up by 10 and the results are
shown only for the first 1000 iterations.

PSM ODG
svega MP 1 0
PMP | 0.999 | -0.1303
maderna MP | 0.9995 | -0.1609
PMP | 0.9985 | -0.2953

Table 3. Results of the PEMO-Q evaluation for MP and PMP
with TF masking and N = 80 000.

masking stages are independent, MP can be replaced by any
other sparse approximation algorithm such as Iterative Hard
Thresholding [19] or Basis Pursuit [20].
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