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ABSTRACT

We introduce a generalization of the MUSIC algorithm to treat
block-sparse signals in a multi-measurement vector framework. We
show, through theoretical analysis and numerical experiments, that
the requirements in terms of number of snapshots and number of
measurements depend not only on the sparsity and on the size of
the blocks, but also on the rank of the matrices of coefficients for
each block. We apply this algorithm to the localization of directive
sources, which can be modeled by block-sparsity in a dictionary
of multipoles, and show that it compares favorably to a greedy
approach based on the same model.

Index Terms— source localization, block sparsity, multi-
measurement vector, multiple signal classification

1. INTRODUCTION

The MUSIC algorithm has recently raised interest in the sparsity and
compressed sensing community, for its use as a multi-measurement
vector (MMV) sparse recovery algorithm, where several vectors are
partially measured, and reconstructed with the knowledge that they
share the same support [1, 2]. Indeed, in contrast to algorithms such
as Simultaneous Orthogonal Matching Pursuit (SOMP) [3], it is ca-
pable of taking in account the diversity of the signals in the differ-
ent channels. We introduce here a generalization of MUSIC to the
case of MMV block-sparsity, where the coefficients of the signals
are grouped in blocks, and only a few of these blocks are involved in
the decomposition.

The original motivation of the development of the MUSIC algo-
rithm was the localization of far-field sources [4]. It is assumed that
the sources are located at a large distance from the sensor array, mak-
ing the directivity of the sources negligible. We show here that our
MUSIC generalization can deal with directive sources in near-field,
and that the particular model used in this case is more constrained
than a standard MMV block-sparse model.

Prior work on source localization and sparse recovery is dis-
cussed in section 2. We introduce the generic block-sparse model
in section 3, as well as two particular examples. The block-sparse
MUSIC algorithm is described in section 4. A theoretical analysis
of the algorithm is given in section 5. Numerical results with ran-
dom dictionaries and source localization are given in section 6, and
concluding remarks are given in section 7.
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2. PRIOR WORK

The MUSIC algorithm [4] was proposed by Schmidt to locate far-
field sources. The field radiated by S sources is measured at an array
of sensors at multiple times. The vector of measurements at time tl
is given by

ml =

S∑
k=1

αkla(θk)

where a is the array manifold, deduced from the geometry of the
array, θk is the direction of arrival of the k-th source, and αkl its
complex amplitude at time tl.

Assuming that the sources are uncorrelated and the number of
sensors is sufficient, the matrix M, obtained by concatenating the
vectors ml, has rank S. To identify the directions of arrival, we
compute the pseudo-spectrum

p(θ) =
1

‖P⊥Ma(θ)‖2
(1)

where P⊥M is the projection on the orthogonal of the space spanned
by the columns of M (the noise subspace). If a source is present at
direction θ, then a(θ) is included in the space spanned by M (the
signal subspace) and p(θ) = ∞. With noisy measurements, the
signal subspace is estimated as the space spanned by the first S left
singular vectors of M.

A variant of MUSIC was recently proposed for the treatment
of directive sources [5]. Based on the phase of the signals only, it
was shown to allow the localization of pure monopoles, dipoles and
quadrupoles. However, it is not clear if the method can localize more
general sources, such as combinations of such elementary sources,
and estimate their directivities.

Source localization and the MUSIC algorithm are closely con-
nected to sparse representations. As the source localization problem
is a special case of sparse recovery [6], methods based on sparsity
can be used, for the standard source localization problem, or for di-
rective sources localization, using a block-sparse modeling of the
source [7]. Conversely, the MUSIC algorithm can also be used as a
sparse recovery algorithm for the MMV problem, like shown in [1],
and can even be combined with OMP [2]. We propose an extension
of this application of MUSIC to block sparsity.

3. SIGNAL MODEL

We introduce here the MMV block sparse model that we consider in
this work. In the standard MMV model, the goal is to reconstruct
a matrix X from measurements Y given by Y = DX where D is
a known matrix called the dictionary, with the knowledge that only



a few rows of X are non-zero. This corresponds to a set of sparse
signals xi (the columns of X) that share the same support. This is
in particular the case for source localization using multiple obser-
vations (snapshots) of the sources, assuming that the sources do not
move between the observations.

For the MMV block-sparse model, a particular structure is im-
posed on D and X: the dictionary D is assumed to be composed
of L sub-dictionaries Dj of size Nm ×Nc, and the matrix X is the
vertical concatenation of L sub-matrices Xj , of size Nc ×Ns:

Y =
(

D1 · · · DL

) X1

...
XL


Nm is the number of measurements, Nc the number of components
in a block, and Ns the number of observations.

Each sub-matrix Xj contains the coefficients of the atoms of the
sub-dictionary Dj for the Ns observations. We assume that only a
few of these sub-matrices Xj are nonzero, and call the number of
such matrices the sparsity S of the matrix X.

The standard sparsity model is obtained when Nc = Ns = 1,
the mono-channel block-sparse model when Ns = 1, and the MMV
model when Nc = 1. In our case, a further parameter is the rank
R of the nonzero sub-matrices Xj , that can vary between 1 and
min(Nc, Ns). This rank is obviously 1 for the previously investi-
gated models, and was not taken into account. We will show that
this rank is involved in the minimal numbers of measurements and
snapshots needed to guarantee perfect reconstruction.

Spectral analysis is a simple application of this model. Given a
signal

xn =

S∑
l=1

al cos(ωln+ φl) =

S∑
l=1

ale
iφleiωln + ale

−iφle−iωln,

the goal is to estimate the frequencies ωl (assumed to be nonzero).
MUSIC can be applied on the matrix Y = (xn+m)nm, which is 2S
sparse in the dictionary of complex exponentials D. By grouping the
conjugate sinusoids, we obtain a block sparse model, with blocks of
size 2. The rows of a nonzero sub-matrix Xj are (aje

iφj eiωjm)m
and (aje

−iφj e−iωjm)m, which are non-colinear when ω 6= 0, thus
having full rank.

We now turn to an example where the rank of the sub-matrices
Xj is 1, localization of sources with non-isotropic directivity pat-
terns. We will assume that the directivities of the sources are limited
to combinations of monopoles and dipoles. The field emitted by a
source located at the origin is, in 3D

p(~r) = a

(
αh0(kr) +

1∑
l=−1

βlY1m(~r/r)h1(r)

)
.

where Y1m are the first order spherical harmonics, h0 and h1 spher-
ical Hankel functions, a is the complex amplitude of the source, and
α and βl characterize the directivity of the source. In far-field lo-
calization, we assume that the sources do not move between the ob-
servations. Here a further assumption is that their directivity pat-
terns relative to the sensor array remain constant (while it is a mild
assumption to assume that their directivity with respect to a local
frame is constant, we also need that the sources do not change their
orientation with respect to the sensor array).

In this case, the measurements for a source at position ~x0 at
sensors ~yn for the Ns snapshots can be written

mns = as

(
αy0(krn) +

1∑
m=−1

βlY1l(~rn/rn)h1(krn)

)

where rn = ~x0 − ~yn. The corresponding sub-matrix Xs is

Xs =

 a1α · · · aNsα
a1β−1 · · · aNsβ−1

a1β0 · · · aNsβ0
a1β1 · · · aNsβ1


We see here that not only a few matrices are nonzero, but also

that these matrices are of rank 1. As shown in the next section, this
further constraint on the sparse model will allow to use less measure-
ments and snapshots to locate and characterize the sources.

4. ALGORITHM

A simple way to treat block sparsity is to first forget the structure of
the dictionary (i.e. treating the problem as a standard MMV prob-
lem), and apply the MUSIC algorithm. The blocks can then be es-
timated a posteriori using the identified atoms. While this method
would work when the rank of the coefficient matrices Xj is full, it
will likely fail if not. Indeed, in this case, nothing guarantees that at
least one of the atoms of each block to be identified lies in the signal
subspace.

To adapt MUSIC to the block-sparse case, we first remark that
finding the maxima of p in equation (1) can be replaced by finding
the maxima of

c(θ) =
‖PMa(θ)‖
‖a(θ)‖

which is actually the cosine of the angle between the signal subspace
and the vector line spanned by a(θ). We can generalize this to the
block-sparse case, by computing for each j the angle (or its cosine)
between an estimation of the signal subspace and the space spanned
by the atoms of the sub-dictionary Dj . This estimated signal sub-
space is obtained as the space spanned by the first K left singular
vectors of the matrix of measurements M. Note that, as will be
shown below, this estimation is not, even in the noiseless case, nec-
essarily of the same dimension as the actual signal subspace.

The cosine of this angle can be easily computed as the largest
singular value of S?Qj where S and Qj are respectively orthogonal
bases of the signal subspace and of the span of Dj [8]. The algorithm
is as follows: given a set of measurements in the form of a matrix
M, a set of sub-dictionaries Dj and a parameter K,
• compute orthogonal bases Qj of the spaces spanned by the

sub-dictionaries,
• compute a basis S of the estimated signal subspace by using

the first K left singular vectors of M,
• compute the pseudo-spectrum c(j) = σ1(S

?Qj), where σ1

is the largest singular value of S?Qj .
The support of the signals is estimated by considering the largest S
values of the pseudo-spectrum c.

5. THEORETICAL ANALYSIS

We give here necessary conditions for the parameter K of the algo-
rithm, the number of snapshotsNs and the number of measurements
Nm to guarantee perfect reconstruction in the case of noiseless mea-
surements. We use here a slightly more abstract formulation of the



model. The signals are in a space E of dimension Nm. The dictio-
nary is composed of L subspacesEj , with dimensionNc. The space
F spanned by the measurements is the sum of S subspaces E′j , each
of them being aR-dimensional subspace ofEj . The algorithm iden-
tifies the subspaces Ej as the subspaces such that Ej ∩ F ′ 6= {0},
where F ′ is a K-dimensional subspace of F .

To simplify the analysis, we assume that any set ofR-dimensional
subspaces of S subspaces Ej are in direct sum. This condition is
similar to the conditions based on the spark of the dictionary for
the standard MMV problem [9], and in particular implies that the
number of measurements Nm is larger than SR.

A first glance at the algorithm would indicate that the minimal
parameter K, i.e. the rank of the estimated signal subspace F ′,
should be SR, as it is the dimension of the actual signal subspace. It
is however slightly lower:

Kmin = R(S − 1) + 1.

Without loss of generality, we can assume that the subspaces to
be identified are the first S ones. If K ≤ R(S − 1), then F ′ can
be included in

⊕S−1
j=1 E

′
j and F ′ ∩ ES = {0}. On the other hand,

consider the case where F ′ does not intersect all the subspaces Ej .
Without loss of generality, we can assume that F ′ does not intersect
ES . Then F ′ is included in

⊕S−1
j=1 E

′
j , which is of dimension at

most R(S − 1), yielding K ≤ R(S − 1). Conversely, we have that
if K > R(S − 1), any K-dimensional subspace of F intersects all
subspaces Ej for 1 ≤ j ≤ S.

The number of snapshot should be obviously larger or equal to
K: Nmin

s = K ≥ Kmin. The number of measurements also has
to be larger or equal to K, but a necessary condition so that only the
subspaces Ej intersect F ′ is that:

Nmin
m = K +Nc.

Indeed, for any subspace Ej , dimF ′ ∩ Ej = dimF ′ + dimEj −
dim(F ′+Ej) ≥ K+Nc−Nm, which is strictly positive ifNm <
K + Nc. In this case, F ′ intersects all the subspaces Ej and the
identification is impossible.

When the smallest parameter K possible is chosen, the number
of measurements should be larger than

Nmin
m = R(S − 1) +Nc + 1.

Note that when Nc = R = 1, that is for the standard MU-
SIC algorithm, all these results reduces to K = S, Nmin

s = S and
Nmin
m = S+1. In the case where Nc = R, it is actually possible to

recover the signal by forgetting the block structure and using MU-
SIC. In this case, one should use K = RS and Nm ≥ RS + 1.
When using the block-sparse MUSIC algorithm with K = RS,
the minimal number of measurements is Nmin

m = R(S + 1) which
is larger than the minimal number of measurements needed for the
standard MUSIC algorithm. However, using the minimal valueK =
R(S − 1) + 1 allows to use only Nm = RS + 1 measurements.

6. NUMERICAL RESULTS

To support our theoretical analysis, we give results of numerical ex-
periments with random dictionaries. The application to directive
source localization is also investigated. Our proposed MUSIC algo-
rithm is compared to a greedy algorithm, Simultameous Block Or-
thogonal Matching Pursuit (SBOMP), a combination of Simultane-
ous Orthogonal Matching pursuit [3] and Block Orthogonal Match-
ing Pursuit [10].
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Fig. 1. Probability of recovery with L = 100, R = 1, Nc = 4,
S = 2, noiseless measurements (left) and noisy measurements, SNR
= 13dB (right), random dictionary, (top) MUSIC, (bottom) SBOMP.

6.1. Random dictionaries

We use here random dictionaries and decomposition coefficients,
with elements drawn from i.i.d. gaussian probability densities. A
dictionary of L subspaces is created from the orthogonalization of
Nm ×Nc gaussian matrices. A subset of S matrices is chosen, and
the signals are synthesized using random Nc×Ns matrices of coef-
ficients with rank R.

The subspaces are identified as the S maximal values of the
pseudo-spectrum using the minimal value of K. Two sets of param-
eters are tested, one with rank one matrices (similar to the source
localization problem), the other one with full rank matrices (similar
to the spectral analysis problem), both with noiseless and noisy mea-
surements (gaussian white noise with SNR = 20 dB). The probability
of identification of the subspaces is estimated using 100 trials, with
number of snapshots and measurements between 1 and 20. These
empirical probabilities are given on figure 1 and 2 for two sets of pa-
rameters. For both sets of parameters and noiseless measurements,
the probability of recovery with MUSIC is 1 when enough measure-
ments and snapshots (according to the theoretical analysis) are used
(2 snapshots and 6 measurements in the first case, 5 snapshots and 7
measurements in the second case). Interestingly, in the full rank case
and even when not enough snapshots are available, identification is
possible with non-zero probability when using more measurements.
The greedy algorithm is able to identify the subspaces with only one
snapshot, but needs nore measurements. In contrast to the MUSIC
algorithm, the transition between probability 0 and probability 1 of
recovery is smooth.

Performances with noisy measurements (SNR = 13 dB) are de-
graded, but not unreasonably so. The MUSIC algorithm performs
here slightly better that SBOMP.

6.2. Directive sources

Localization of directive sources is now simulated. For the sake of
simplicity, the simulations are done in two dimensions. A linear
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Fig. 2. Probability of recovery with L = 100, R = 2, Nc = 2,
S = 3, noiseless measurements (left) and noisy measurements, SNR
= 13dB (right), random dictionary, (top) MUSIC, (bottom) SBOMP.

antenna of 8 omnidirectional sensors (the minimal number in this
case) is used to locate two sources, one fixed, the other moving par-
allel to the antenna. This antenna is of length 1 m, and the sources
are at a distance of 1 m. The SNR is 20 dB, and the wavenumber is
k = 18.5 m−1 corresponding to a frequency of 1 kHz and a wave-
length of λ = 34 cm.

The result of the localization of the two sources are given on fig-
ure 3 for noiseless measurments and noisy measurements with SNR
= 20 dB. In the noiseless case, while the greedy localization meth-
ods only gives approximate results, the proposed MUSIC method
yields correct estimation of the location of the sources, even when
the sources are separated by less than a wavelength λ, indicated on
the figure. MUSIC also offers better performances in the noisy case.

7. CONCLUSION

We introduced a variant of the MUSIC algorithm for the case of
block-sparse signals. This model, in the case of source localiza-
tion, is able to take in account directive sources. Our first theoret-
ical and simulation results show that the number of measurements
and of snapshots does not only depend on the sparsity and the size
of the block, but also on the rank of the coefficient sub-matrix for
each block involved in the decomposition. Further works will re-
fine the theoretical analysis, in particular to explain the sharp tran-
sition in the rank 1 case and the soft transition in the full rank case
of the empirical probability of recovery in function of the number of
snapshots, and investigate the connections with recovery of low-rank
joint sparse signals [11].
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Fig. 3. Estimation of the position of two sources. The first is fixed
at position 0, the second moves parallel to the array. Results of the
proposed MUSIC variant and the Simultaneous Block Orthogonal
Matching Pursuit SBOMP. (top) noiseless measurenents, (bottom)
SNR = 20 dB.
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