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ABSTRACT:
The application of the Sliding Frank-Wolfe algorithm to gridless compressive beamforming is investigated for single

and multi-snapshot measurements and the estimation of the three-dimensional (3D) position of the sources and their

amplitudes. Sources are recovered by solving an infinite dimensional optimization problem, promoting sparsity of

the solutions, and avoiding the basis mismatch issue. The algorithm does not impose constraints on the source model

or array geometry. A variant of the algorithm is proposed for greedy identification of the sources. The experimental

results and Monte Carlo simulations in 3D settings demonstrate the performances of the method and its numerical

efficiency compared to the state of the art. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

In the context of source localization,1 sparsity based

estimation methods offer several advantages compared to

the classical methods, such as conventional beamforming,

mostly in terms of spatial resolution and size of the data.2

Sparsity based methods can be grossly classified in the

optimization based methods, mostly using the ‘1 norm,3–5

or similar mixed norms,6 and greedy algorithms, the most

popular being orthogonal matching pursuit7 (OMP).

These methods accept that the sources are drawn from a

finite dictionary of sources and estimate their amplitudes

by assuming that most of them are zero. This approach

suffers from the basis mismatch problem in which actual

sources cannot be exactly represented by a member of the

dictionary.8 It has been shown that this problem cannot be

mitigated by refining the grid: for one-dimensional (1D)

problems, even in low noise regimes, the least absolute

shrinkage and selection operator (LASSO) method yields

a number of sources that are doubled compared to the

actual source distribution, even if the sources are located

on the grid.9

Several methods have been proposed to deal with this

limitation. The first approach is to approximate a source at

an arbitrary point by a source on a finite grid, corrected by

an additional term given by a Taylor expansion. The numer-

ical problem is then solved using the sparsity based

method10,11 or sparse Bayesian learning.12,13

Grid-free compressive beamforming is possible for

far-field sources and uniform linear arrays14 or uniform

rectangular arrays15 with possibly missing nodes or multiple

snapshots.16 Numerically, a finite dimensional semi-definite

program (SDP)17,18 is used to recover the directions of

arrival. The extension to arbitrary array shapes was recently

introduced.19 However, other source models, such as near-

field sources, cannot be tackled by this method. Finally, the

Newtonized orthogonal matching pursuit (NOMP) algo-

rithm20,21 is a variant of the OMP, where Newton steps are

used to refine the estimations of the sources at each iteration.

In this paper, grid-free source localization is performed

by solving the Beurling LASSO problem,22 an infinite

dimensional optimization problem similar to the LASSO

problem. The sources are assumed to be located in a region

of interest X, which is, here, not assumed to be a discrete

set. The distribution of sources is modeled by a measure l
defined on X. In the particular case of a finite number of

monopolar sources, the measure l is a finite sum of Dirac

masses, which are located at the positions of the sources and

weighted by their amplitudes. In particular, we consider the

Sliding Frank-Wolfe (SFW) algorithm23 to solve the

Beurling LASSO problem and estimate the positions and

amplitudes of the sources.

In this algorithm, a source is added at each iteration,

and the parameters of all of the sources are then locally and

jointly optimized. Under some conditions (in particular, that

the solution is a finite sum of Dirac masses and is unique),

this algorithm was shown to converge in a finite number of

iterations.23

In addition to its original formulation, the SFW algo-

rithm is extended here to deal with multi-snapshot data.

Moreover, in addition to the standard SFW algorithm, which

aims to solve the Beurling LASSO problem, a modification

of the SFW algorithm is also used as an OMP algorithm

a)Electronic mail: gilles.chardon@centralesupelec.fr, ORCID: 0000-0003-

0483-9957.

J. Acoust. Soc. Am. 150 (4), October 2021 VC 2021 Acoustical Society of America 31390001-4966/2021/150(4)/3139/10/$30.00

ARTICLE...................................

https://doi.org/10.1121/10.0006790
mailto:gilles.chardon@centralesupelec.fr
http://crossmark.crossref.org/dialog/?doi=10.1121/10.0006790&domain=pdf&date_stamp=2021-10-26


with local refinements, an alternative to the NOMP.

Compared to the SFW algorithm for the Beurling LASSO

(BLASSO) problem, this variant takes the number of sour-

ces as a parameter, and its number of iterations is limited

to the number of sources.

The method is demonstrated on the experimental data

with the localization of four sources in a three-dimensional

(3D) domain in a case when some sources cannot be identi-

fied by beamforming because of their limited resolution.

The Monte Carlo simulations are performed to obtain results

on the accuracy and computational time of the SFW algo-

rithm compared with previously proposed methods.

Although 3D localization, compared to two-dimensional

(2D) localization, does not raise fundamental challenges,

practical issues arise:24–26 the distance between the sources

and array is an additional parameter to be estimated, the res-

olution in the radial direction from the array is poorer than

in the normal direction and, finally, the size of the domain

of interest is increased from a surface to a volume.

Therefore, efficient methods, in the sense of computational

time, are necessary. The SFW based grid-free methods are

shown to be competitive with better or equivalent estimation

performances and reduced computational complexity.

Moreover, the SFW based methods do not require particular

array configurations or source models.

The paper is organized as follows. Section II introduces

the source localization model and discusses the state of the

art. In Sec. III, the Beurling LASSO and SFW algorithm are

recalled, and the multi-snapshot variant is introduced. The

numerical and experimental results are given in Secs. IV

and V, respectively. Section VI concludes the paper. The

code reproducing the numerical and experimental results is

available online.27

II. MODEL AND STATE OF THE ART

We consider an array of M microphones, located at

positions ym 2 R3 (m denotes the index of the microphone),

measuring acoustical data. The complex amplitudes of the

measurements at a given frequency f are obtained at times ts,
where s ¼ 1,…,S is the number of snapshots (in practice, the

time domain measurements are analyzed by a short time

Fourier transform). Assuming the presence of K sources at

positions xk with complex amplitudes aks, the measured data

ps 2 CM at ts can be decomposed as

ps ¼
XK

k¼1

aksgðxkÞ þ ns; (1)

where gðxkÞ is the vector collecting the values of the Green

function from the source at xk to the sensors, and ns is a

measurement noise, assumed to be white in space and time.

When S ¼ 1, we write p ¼ p1 and ak ¼ ak1. In the free field

conditions, the vector gðxÞ is given by its coefficients,

gmðxÞ ¼
exp �ikkx� ymk2

� �
kx� ymk2

; (2)

where k ¼ 2pf=c, and c is the wave velocity. However, no

particular shape is assumed for gðxÞ. Our goal is to estimate

the positions xk and amplitudes aks from the measured data

ps. The grid-based and grid-free methods are now recalled.

A. Grid-based estimation

In the grid-based methods, the source positions xk are

assumed to lie on a discrete grid of N points. A finite dimen-

sional dictionary D 2 CM�N is then assembled by collecting

the Green functions of the grid points, and the vector of the

amplitudes of the sources a 2 CN is recovered by solving

the system

p � Da: (3)

The goal of sparse recovery is to find the solution of Eq.

(3) with the least nonzero coefficients, i.e., with the lowest

‘0-“norm,” defined as the number of nonzero coefficients.

This problem is not tractable.

In the OMP, an approximate solution of ‘0 minimiza-

tion is found by selecting the sources iteratively, identifying

the source that is the most correlated to the data, and then

projecting the data on the orthogonal of the space spanned

by the previously identified sources.

In the ‘1 based approaches, the ‘0-norm is replaced by

its convex relaxation, the ‘1 norm (or in multiple snapshots

settings, a mixed norm6,28). A convex minimization problem

is then solved, yielding a sparse distribution of sources. The

LASSO is a penalized formulation of the problem in which

the vector of the estimated amplitudes ak 2 CN is obtained

by solving

ak ¼ argmin
a2CN

kDa� pk2
2 þ kkak1; (4)

where the ‘1 norm is defined as kak1 ¼
PN

n¼1 janj.
Alternatively, a constrained version can be used by mini-

mizing an ‘1 norm under an ‘2 constraint (basis pursuit

denoising, BPDN) or vice versa. The application of this

method to the acoustical source localization was investi-

gated in Refs. 4 and 25.

The grid-based estimation methods are limited by the

basis mismatch problem8 in which a source does not exactly

lie on a grid point. Then, a source is spread out over multiple

grid points, hindering the correct estimation of its position

and amplitude.

B. Atomic norm based compressing beamforming

In some particular cases, grid-free compressive beam-

forming can be achieved using finite dimensional positive

semi-definite problems.14,15 This is the case for far-field

sources and uniform linear arrays, where gðxÞ has a particu-

lar shape (that is, complex exponentials). This type of

method is limited to specific shapes of microphone arrays

and, more importantly, to the far-field case, as it takes

advantage of the properties of complex exponentials. This

method can be extended to multiple snapshots16 and
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arbitrary array shapes by using a Fourier decomposition of

the measure modeling the source distribution.19 However,

this method imposes constraints on the model (shape of the

array, far-field sources) that will not be satisfied in our

numerical and experimental settings as we consider the arbi-

trary array shapes and non-far-field sources.

C. OMP with local optimization

Starting from the OMP algorithm, the NOMP was pro-

posed for spectral estimation,20 recently extended to source

localization.21 The idea of the NOMP is to augment the

OMP algorithm with local optimization of the positions and

amplitudes of the sources using Newton steps. To do so, the

sources are added at each iteration on a finite grid and

refined using a Newton optimization step, leaving the other

positions fixed.

After the introduction of a new source, the positions

and amplitudes of all of the sources are refined one at a

time, cyclically by local Newton steps, until the decrease in

the energy of the residual between the iterations falls below

a tolerance s. A new iteration is then executed with the addi-

tion of a new source until a stopping criterion is reached.

The results in the 2D localization showed that estima-

tion of the positions of the sources was improved compared

to the OMP, using the same finite grid.21 However, the

method fails with coarse grids when local Newton iterations

do not converge toward a local minimum of the objective

function.20

D. Block-sparsity with Taylor approximations

The block-sparsity, combined with the Taylor approxi-

mations, can be used for the grid-free sparse estimation.

With z being a member of the grid, an off-grid source at the

position zþ D with the offset D ¼ ðDx;Dy;DzÞ of the ampli-

tude a can be approximated as

agðzþ DÞ � agðzÞ þ aDx
@g

@x
þ aDy

@g

@y
þ aDz

@g

@z
: (5)

For positive real amplitudes a, off-grid sources can be local-

ized by the continuous basis pursuit method,10 minimization

of the ‘1 norm of the sources with additional convex con-

straints on the corrections, ensuring that they remain

bounded by d=2, where d is the grid step. However, it was

shown that for small grid steps d, this method, as the finite

dimensional LASSO, represents a unique source by multiple

grid points.29 For complex amplitudes, the constraints nec-

essary to ensure that the corrections are not larger than d=2

are non-convex. In this case, a mixed norm can be used.11

For each grid point, a vector of amplitudes ðâ0; â1; â2; â3Þ
� ða; aDx; aDy; aDzÞ (most of them begin null) is estimated

from which the correction of the position is obtained.

However, compared to the positive real amplitudes case,

this formulation does not ensure that the corrected point

stays near the associated grid point (in fact, the quotients

â1;2;3=â0 are, in general, complex). Finally, the step d has to

be small enough so that the linear approximation around the

center of a cell remains precise enough in the cell, implying

small steps d and large computational grids.

III. THE SFW ALGORITHM

We introduce now the Beurling LASSO problem and

the SFW algorithm used to solve it. Assuming that the sour-

ces are located in a region of interest X, the distribution of

the sources is modeled by a measure l, i.e., a function tak-

ing as input a subset30 of X, yielding a positive, real, or

complex value (respectively, measure, signed measure, and

complex measure). The measure l models the distribution

of sources in the domain of interest X without the need for a

discrete grid.

A particular example of measure is the Dirac mass dx,

which can be used to model a point source at position x 2 X
of unit amplitude. We recall that the integral of a function f
with respect to the Dirac mass dx is given by

ð
X

fddx ¼ f ðxÞ: (6)

In general, a distribution of K sources at time ts with

positions xk and complex amplitudes aks is modeled by the

discrete measure

ls ¼
XK

k¼1

aksdxk
: (7)

Equation (1) can be rewritten as

ps ¼
ð

X
gdls þ ns: (8)

The source localization method introduced in this paper

is based on the SFW algorithm,23 which aims at solving the

Beurling LASSO problem, which is defined for S ¼ 1 by

l? ¼ argmin
l2M

1

2

����
ð

X
gdl� p

����
2

2

þ kjljðXÞ; (9)

where M is the set of complex measures defined on X.

Then, the positions and amplitudes of the sources are given

by the decomposition of l? in Eq. (7).

The regularization term jljðXÞ is the total variation

norm of the complex measure l, defined by31

jljðXÞ ¼ max
f2C1

ð
X

fdl; (10)

where C1 is the set of continuous functions on X with

the absolute value bounded by one. For a discrete measure

l ¼
PK

k¼1 akdxk
(with pairwise distinct xk), the definition

reduces to

jljðXÞ ¼
XK

k¼1

jakj: (11)
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We observe that here we recover the ‘1 norm of the ampli-

tudes of the sources. It can also be considered as the atomic

norm of l using the Dirac masses as building blocks. The

Beurling LASSO is similar to the LASSO problem (4) with

the important difference that the positions of the estimated

sources are not limited to a predefined finite grid.

The SFW algorithm solves Eq. (9) by iteratively adding

the Dirac masses to the measure being optimized, alternat-

ing with local updates of the positions and amplitudes of the

Dirac masses. The steps of the algorithm are given in detail

in Algorithm 1. The notation GðXÞ denotes the M� k
matrix, collecting the values of g for the positions in the

tuple X ¼ ðx1;…; xkÞ. ( ) denotes the empty tuple, and

ðX; x?Þ denotes the insertion of x? into the tuple X. Kmax is

the maximal number of iterations. An iteration consists of

the following steps:

• First, a source is added by solving the global optimization

problem (12). To this end, the maximum of g½k� [defined

in Eq. (13)] is searched on a finite grid and used as the ini-

tialization for a local optimization;
• amplitudes are then updated in Eq. (14), which is a

LASSO problem;
• finally, the amplitudes and positions are jointly optimized

in Eq. (15). This problem is non-convex (indeed, the

objective function is left unchanged by the permutation of

the positions and amplitudes of two sources, and replacing

the positions and amplitudes of these two sources by their

mean is unlikely to yield a lower value of the objective

function as would be the case for a convex objective func-

tion). However, the local optimization is sufficient, e.g.,

with a quasi-Newton algorithm, initialized at positions

X½k�1=2� and amplitudes a½k�1=2�.

Under some constraints on the solution l? (in particular,

that it is a finite sum of Dirac masses), the algorithm is

shown to converge in a finite number of iterations.23 In our

implementation, the MATLAB 2019b function fmincon
was used to solve Eqs. (12), (14), and (15) using the sequen-

tial quadratic programming algorithm.32

ALGORITHM 1. The SFW algorithm, solving Eq. (9).

l½0�  0; r½0�  p; X½0�  ð Þ
for k ¼ 1;…;Kmax do

Identify a new source by solving

x? ¼ argmax
x2X

g½k�ðxÞ; (12)

where

g½k�ðxÞ ¼ 1

k
jgðxÞ?r½k�1�j (13)

if gðx?Þ � 1 then

Stop

else

X½k�1=2� ¼ ðX½k�; x?Þ

Optimize the amplitudes:

a½k�1=2� ¼ argmin
a2Ck

þ

1

2
kGðX½k�1=2�Þa� pk2

2 þ kkak1 (14)

Optimize the amplitudes and positions:

ðX½k�; a½k�Þ ¼ argmin
X2Xk ;a2Ck

þ

1

2
kGðXÞa� pk2

2 þ kkak1 (15)

l½k�  
Xk

n¼1

a½k�n d
x
½k�
n
; r½k�  p�GðX½k�Þa½k�

end if

end for

A. Multi-snapshots data

In this subsection, we present a modification of the

SFW algorithm aimed at processing multi-snapshot data. In

the case of several snapshots, the measured data ps is

assembled in the M� S matrix P. The amplitudes for each

source and each snapshot are optimized in Eqs. (14) and

(15). In Eq. (15), the positions of the sources are common

among the snapshots. In these equations, the ‘1 norm is

replaced by a mixed norm.6,28 With A being the k� S
matrix containing the complex amplitudes of k sources for

S snapshots and each row ar;j corresponding to the ampli-

tudes of the jth source for the S snapshots, we define the

‘2;1 mixed norm as

kAk2;1 ¼
Xk

j¼1

kar;jk2: (16)

In a given row, the ‘2 norm is considered, which does

not impose sparsity inside the row. Indeed, this would imply

temporal sparsity of the source, which is not expected here.

Then, the ‘1 norm of the ‘2 norm is computed as we expect

spatial sparsity.

The function g is updated with

g k½ �ðxÞ ¼ 1

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XS

s¼1

jgðxÞ?r k�1½ �
s j2

vuut ; (17)

where r
½k�1�
s is the residual for the sth snapshot, defined by

r k½ �
s ¼ ps �GðX k½ �Þa k½ �

c;s; (18)

where a
½k�
c;s is the sth column of A½k�, containing the ampli-

tudes of the sources for the sth snapshot. Details on this

choice of g are given in the Appendix.

Equations (14) and (15) are replaced by

A k�1=2½ � ¼ argmin
A2CkS

1

2
kGðX k�1=2½ �ÞA� Pk2

F þ kkAk2;1 (19)

and
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ðX k½ �;A k½ �Þ ¼ argmin
X2Xk ;A2CkS

1

2
kGðXÞA� Pk2

F þ kkAk2;1; (20)

where jj � jjF denotes the Frobenius norm of a matrix,

defined as the ‘2 norm of its coefficients.

B. Setting the regularization parameter k

Setting the regularization parameter is known to be a

difficult problem. To help this tuning, the homotopy

approach can be used:33 results of the algorithm for several

parameters k can be obtained by sequentially running the

SFW algorithm for decreasing k, initializing each run with

the output of the previous run. In this case, the algorithm

starts by solving Eq. (15) and checking the value of g to

avoid the addition of a source if it is not necessary. The

search of the parameter k can be stopped when an appropri-

ate number of sources is found or, according to Morozov’s

principle,34 by setting k such that the error between the mea-

surements and acoustical field generated by the estimated

sources jjGðXÞA� Pjj2F is on the order of the expected noise

level.

C. A greedy version of the SFW algorithm

Although the SFW algorithm solves a minimization

problem, its structure is similar to the greedy sparse recov-

ery algorithms such as the OMP. The SFW algorithm can be

used for greedy identification of acoustical sources by set-

ting k¼ 0, using a normalized dictionary gnðxÞ ¼ gðxÞ=
jjgðxÞjj2, and stopping the algorithm after a fixed number of

iterations. This version of the SFW algorithm is more practi-

cal when an estimation of the number of sources is known.

Moreover, the number of iterations is limited to the itera-

tions necessary to recover the sources, whereas additional

spurious sources can slow the algorithm down because of

the additional iterations and the higher number of parame-

ters to optimize in Eqs. (14) and (15).

Compared to the NOMP, where positions and ampli-

tudes of the sources are optimized sequentially at each itera-

tion, here, positions and amplitudes of all of the identified

sources are locally and jointly optimized. The normalized

dictionary gn will also be used when solving the BLASSO

problem (9).

IV. NUMERICAL RESULTS

Performances of the SFW algorithm for the acoustical

source localization, in comparison to the state of the art, are

now assessed using simulated data. Both versions of the

SFW algorithm are considered: the penalized SFW, solving

Eq. (9), and the greedy SFW, introduced in Sec. III C.

A. A simple 1D example

To allow comparison between the semi-definite pro-

gramming based method, BPDN, block-sparsity, and penal-

ized SFW algorithm, a first simulation is made in the case of

a simple 1D direction of arrival estimation. The results of

equivalent source method - iteratively ReWeighted Least-

Squares (ESM-IRLS)24 are also given.

Figure 1 shows the results of the localization of two far-

field sources of amplitudes 1 and 2 Pa, arriving from angles

h1 ¼ 0:21 and h2 ¼ �0:53 with a uniform linear array of 20

microphones with a pitch that is half the wavelength, using

S ¼ 1 snapshot. For the SDP problem, BPDN, and block-

sparsity estimation, the tolerance � is set as twice the norm

of the noise and for the SFW algorithm, k ¼ 1. The ESM-

IRLS24 is used with p ¼ 0. The grid used for BPDN, block-

sparsity, and ESM-IRLS and to initialize Eq. (12) in the

SFW algorithm is a regular sampling of 40 values of sin ðhÞ
in the interval ½�p=2; p=2�. For the block-sparsity, the deriv-

ative of the dictionary is normalized so that the decomposi-

tion of a source located between grid points has coefficients

in the dictionary and its derivative is of the same order.

Although h1 and h2 are not on the grid, the SDP and

SFW algorithm are capable of estimating the directions of

arrival correctly. For the BPDN, block-sparsity, and EMS-

IRLS, each source is represented by two spikes. Moreover,

several spurious sources appear, caused by the basis

mismatch.

B. Performances of the SFW algorithm

Now, performances of the SFW algorithm, in its

original penalized version (SFW p.) and greedy version

(SFW g.), OMP, and NOMP are compared in the function of

several parameters: step d of the discretization grid, fre-

quency, SNR, number of snapshots, and resolution using

Monte Carlo simulations. The SDP based grid-free method

cannot be used here as it cannot deal with the source model.

The block-sparsity method was also considered, but long

running times (typical running times of 500 s compared to

less than a second for the greedy SFW algorithm at

d ¼ 0:1 m) prevented its use in the simulations.

FIG. 1. (Color online) The simulations. The direction of the arrival estima-

tion, (a) SFW and SDP, (b) BPDN and block-sparsity (amplitudes below

10�2 are not plotted).
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An array of 128 microphones is used with positions of

the microphones shown in Fig. 2 in the plane Z ¼ 0. The

domain X is defined by �1 � X � 1;�1 � Y � 1; 3 � Z
� 5 (in m), discretized with a step d ¼ 0:05 m (except when

stated otherwise). Three sources are randomly placed in X
using a uniform density with amplitudes 0.1, 0.2, and 0.4 Pa

and random phases. For the original SFW algorithm, the k
parameter is chosen as the minimal value such that three

sources are identified. The estimated amplitudes obtained by

least squares fitting of the data to the sources identified by

the BLASSO problem, avoiding the bias introduced by the

regularization terms, are also given (SFW p. LS).

Fifty realizations of the data are used to estimate the

mean square error (MSE) of the positions and amplitudes of

the sources.

1. Grid step

In the OMP, the estimated positions will necessarily lie

on the grid, whereas for the NOMP and SFW algorithm, the

grid is used only at the identification step, followed by local

optimization, and should have a lesser impact on the locali-

zation results.

The MSE for the position and amplitude estimation are

given in Fig. 3(a) for the OMP and NOMP with tolerances

of s ¼ 10�7 and s ¼ 10�9, respectively, and the SFW algo-

rithm with S ¼ 1, F ¼ 4858 Hz and a SNR of 20 dB. As

expected, the performances of the OMP worsen as the step

increases. Compared to the OMP, the local optimization of

the NOMP with s ¼ 10�7 improves the localization per-

formances. The NOMP, with s ¼ 10�9, reaches similar per-

formances to the SFW algorithm for steps up to 0.1 m.

However, at d ¼ 0:2 m, the performances of the NOMP

degrade compared to the SFW algorithm. This can be

explained by the fact that the condition for convergence of

the Newton method toward a local maximum of the likeli-

hood function is not satisfied:20 at the grid point, where a

source is first placed, the objective function is non-convex,

and the Newton step does not yield a relevant update of the

position. For larger steps, the SFW algorithm also fails.

Here, the grid is too coarse compared to the wavelength to

allow initialization of the optimization problem (12) near

the global optimum.

The amplitude estimated by solving the Beurling

LASSO problem with the penalized SFW algorithm is

biased. Reestimating the amplitudes improves the estimation

of the amplitudes.

For the following numerical experiments, the tolerance

s ¼ 10�9 will be used for the NOMP.

2. Frequency

The performances with respect to the frequency are plot-

ted in Fig. 4(a) with S ¼ 1, a grid step of 0.05 m, and a SNR

of 20 dB. At low frequencies, the methods can return several

sources with identical positions when the distance between

the sources is not sufficient. In this case, the estimation of the

amplitude of the sources is ill-conditioned. To avoid a large

error in the amplitude estimations caused by this ill-

conditioning, when two sources have estimated positions x

and x0 such that jhgðxÞ; gðx0Þij=ðkgðxÞkkgðx0ÞkÞ > 0:98,

their amplitudes are replaced by their averages and, similarly,

when the three sources are estimated at the same position.

Here, it is expected that the performances improve with

increasing frequencies. This improvement is visible for all

of the methods at lower frequencies (performances of the

OMP are, however, limited by the coarse grid used here).

Above the frequency 10 kHz for the NOMP and 18 kHz for

the SFW algorithm, the performances of the methodsFIG. 2. (Color online) The layout of the microphone array.

FIG. 3. (Color online) The simulations. The performances of the greedy

SFW, penalized SFW, OMP, and NOMP in the function of the grid step.

The (a) MSE in position (left) and amplitude (right) and (b) computational

time (left) and number of positions visited (right) are shown.
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degrade. This failure is explained, as in the case of the vary-

ing grid step, by the coarseness of the grid compared to the

wavelength.

3. SNR

Here, we analyze the effect of the noise level on the

estimation. Figure 4(b) shows the MSE in the position and

amplitudes with respect to the SNR with S ¼ 1, F
¼ 4858 Hz. The performances of the OMP are limited by

the grid. The NOMP and greedy SFW algorithm show simi-

lar performances except at a high SNR. This discrepancy is

caused by stopping the local optimization of the NOMP

when the tolerance s is reached, which is before

convergence.

4. Number of snapshots

The performances of the methods are now compared

for the increasing number of snapshots from S ¼ 1 to S
¼ 10 with F ¼ 4858 Hz and a SNR of 10 dB in Fig. 4(c).

Here, the amplitudes of the sources at each snapshot are

drawn from independent random complex Gaussian varia-

bles such that their root mean square (RMS) amplitudes are

0.1, 0.2, and 0.4 Pa. All of the methods fail for a unique

snapshot. This is caused by the lower SNR and random

amplitudes, which, hence, can be close to zero for some

sources in some configurations. Using several snapshots

ensures that all of the sources have a sufficient amplitude

for at least one snapshot. The results of the MUSIC algo-

rithm are also given when the number of snapshots is larger

than the number of sources, showing better performances

of the SFW algorithm compared to MUltiple SIgnal

Classification (MUSIC) for the values of S used here.

5. Resolution

Finally, the resolution of the methods is compared.

Two sources of identical amplitudes are used with S ¼ 1, F
¼ 4858 Hz, and a SNR of 20 dB with varying distances

between the sources. Figure 5 shows the position error when

the two sources are in a plane parallel to the array (left) and

with the two sources having identical X and Y coordinates

(right). The greedy SFW algorithm, penalized SWF, and

NOMP improve at the same threshold (approximately

0.075 m in the XY plane and 0.44 m in the Z axis). The

greedy SFW algorithm exhibits better performances for dis-

tances up to twice this threshold.

FIG. 4. (Color online) The simulations. The position (left) and amplitude

MSE (right) in the function of the (a) frequency F, (b) SNR, and (c) number

of snapshots S.

FIG. 5. (Color online) The simulations. The position MSE in the cases of two sources with varying distances are shown with sources in the same plane paral-

lel to the array (left) and in the same axis normal to the array (right).
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6. Computational effort

In Fig. 3(b), the computational time [on a personal lap-

top equipped with an Intel Core i7-7820HQ at 2.90 GHz � 8

central processing unit (CPU) and 16 GB memory; Intel,

Santa Clara, CA, USA] of the four methods is plotted, as

well as the number of positions x, where gðxÞ is computed

for a varying grid step. The SFW algorithm yields results in

a shorter time than the NOMP at s ¼ 10�9 by an order of

magnitude with fewer visited positions. This discrepancy is,

in part, explained by the fact that the SFW algorithm opti-

mizes the positions and amplitudes of all of the sources

jointly, whereas the NOMP considers them separately.

In conclusion, these numerical experiments show that

the SFW algorithm compares favorably with respect to the

NOMP method. Indeed, when both methods succeed in

locating the sources, the SFW algorithm yields similar or

better performances than the NOMP. Additionally, the SFW

algorithm does not necessitate the grids as fine as the

NOMP. At a fixed grid size, the NOMP shows higher com-

putational times at a tolerance s, yielding similar performan-

ces to the SFW algorithm. These observations show that the

SFW algorithm is better suited than the NOMP for grid-free

source localization, in particular, at high frequencies as the

necessary grid step scales like the wavelength. The greedy

version of the SFW algorithm was found to yield slightly

better performances than the SFW algorithm solving the

BLASSO problem, even after the reestimation of the

amplitudes.

V. EXPERIMENTAL RESULTS

In the experimental results, four sources (Visaton-BF32

omnidirectional loudspeakers, Haan, Germany) are used,

pictured in Fig. 6, which emit white noise. The acoustical

field is measured using an array of 128 Micro Electro

Mechanical Systems (MEMS) microphones (InvenSense-

INMP441, San Jose, CA, USA) with the positions shown in

Fig. 2. The sampling frequency is Fs¼ 50 kHz, and the signals

are analyzed by a short time Fourier transform with a Hann

window of duration 82 ms (4096 samples) and 50% overlap.

More details on the experimental setup are found in Ref. 35.

The domain of interest is the box defined by �2 � X
� 1;�1 � Y � 0; 4 � Z � 5 (in m), containing the four

sources. S ¼ 10 snapshots are used, and the results are

obtained at frequency F¼ 1818 Hz. The results of conven-

tional beamforming are given in Fig. 9(a). At the chosen fre-

quency, the two central sources cannot be separated by

beamforming.

FIG. 6. (Color online) The acoustical sources and coordinate frame.

FIG. 7. (Color online) The experimental results. The RMS amplitudes of

the sources (identified by a color) found by the penalized SFW with the nor-

malized dictionary gn in the function of the regularization parameter k. The

parameter k used in Fig. 9 is indicated by the dashed line.

FIG. 8. (Color online) The experimental results. The Z-coordinate of the sources identified by the penalized SFW for the normalized gn and un-normalized

model g in the function of the regularization parameter k.
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The penalized SFW algorithm is run for several values of

k in the BLASSO problem (9) using the homotopy approach

described in Sec. III B with the normalized dictionary gn. The

estimated amplitudes and positions of the sources depend on

the regularization parameter k. Figure 7 shows the evolution

of the estimated amplitudes of the sources in the function of

k. The amplitudes are defined as the RMS of the amplitudes

for each snapshot, normalized by the amplitude of the most

powerful source, and estimated by the beamforming from the

measurements where it is the only active source. Each color

represents a source identified by the algorithm. For high k, the

amplitudes of the sources are underestimated, whereas for low

k, several spurious sources appear.

Figure 8 highlights the importance of the normalization

of the dictionary. Here, the estimated Z coordinates for each

source are plotted in the function of the regularization

parameter k, using the un-normalized dictionary g and the

‘2-normalized dictionary gn. Using g, the estimated posi-

tions are biased toward the array for large k. Indeed, in these

cases, it is preferable to estimate a source at a position closer

to the array, where the model does not match the data as

well as the correct position, but the necessary amplitude is

smaller and, therefore, generates a smaller penalization.

Although the estimated Z coordinates fluctuate in the func-

tion of k when using gn, no clear bias is visible.

In Fig. 9, the estimated positions for k ¼ 648 (just

before the appearance of a fifth source, denoted as the penal-

ized SFW) are plotted. In Fig. 9, the results of the greedy

versions of the SFW algorithm, OMP, NOMP (here, the

data-dependent tolerance s is s ¼ 0:01, which has been

observed to yield similar results to the SFW algorithm),

MUSIC, and CLEAN-SC Decomposition combined with the

ESM-IRLS (Ref. 24) are reported with four iterations.

The estimated powers of the sources are given in

Table I for the OMP, NOMP, greedy and penalized SFW,

and MUSIC and are compared to the power estimated by

beamforming in settings where each source is the unique

active source.

VI. CONCLUSION

The application of the SFW algorithm for acoustical

source localization is introduced. Modifications of the algo-

rithm were used to take into account the multi-snapshots

data and perform greedy identification of the sources. The

estimation performances were shown to be better than, or

comparable to, the state of the art. Additionally, the method

is numerically efficient with smaller computational times

than other grid-free methods and is not based on a particular

source model or limited to specific array shapes. The results

for several values of the regularization parameter k are

obtained, helping the choice of the regularization parameter.
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APPENDIX A: SELECTION CRITERION g

In Algorithm 1, g½k� is defined as

g k½ �ðxÞ ¼ 1

k
jgðxÞ?r k�1½ �j: (A1)

At the end of an iteration, where amplitudes and positions of

the estimated sources are locally optimal, the objective func-

tion can be locally improved only by adding a new source.

Defining hx;wð�Þ ¼ Jðlk þ �eiwdxÞ � JðlkÞ, the variation of

the objective function J of Eq. (9) when introducing a source

at x with phase w and positive amplitude � is

h0x;wð0Þ ¼ �Re e�iwgðxÞ?r k�1½ �
� �

þ k: (A2)

The maximal decrease is obtained when w is chosen as the

angle w? of ðgðxÞ?r½k�1�Þ?, yielding

h0x;w?
ð0Þ ¼ �jgðxÞ?r k�1½ �j þ k: (A3)

TABLE I. Experimental results. The estimated powers of the sources for

OMP, NOMP, greedy SFW, penalized SFW (penal. SFW), and penalized

SFW with the least squares estimation of the amplitudes (penal. SFW LS).

Power OMP NOMP SFW gr. SFW p. SFW p. LS MUSIC

Source 1 52.9 51.8 51.6 51.5 50.0 51.6 51.7

Source 2 53.3 53.5 53.4 53.4 52.0 53.4 53.6

Source 3 51.0 48.1 49.6 49.6 47.3 49.5 50.1

Source 4 50.8 50.1 50.1 50.1 48.3 50.1 50.3

FIG. 9. (Color online) The experimental results. The beamforming in a plane, and greedy and penalized versions of the SFW, OMP, NOMP, MUSIC and

CSCD-ESM-IRLS are shown in the front (top) and top (bottom) views. The sizes of the markers are proportional to the source power.
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Maximizing g½k�ðxÞ can, therefore, be interpreted as choos-

ing the position, x, where adding a source maximizes the

improvement of the objective function. Moreover, when

h0x;w?
ð0Þ � 0 for all possible positions x [equivalently,

g½k�ðxÞ � 1], the objective function cannot be improved by

adding a source, and the algorithm stops.

For the multi-snapshot problem, we define hx;uð�Þ as the

variation of the objective function when a source is intro-

duced at x with amplitudes us� for each snapshot with

jjujj2 ¼ 1 and � � 0. Then,

h0x;uð0Þ ¼ �
XS

s¼1

ReððusgðxÞÞ?r k�1½ �
s Þ þ k: (A4)

Defining v such that vs ¼ gðxÞ?r½k�1�
s ,

h0x;uð0Þ ¼ �Reðu?vÞ þ k: (A5)

The vector u, maximizing the decrease in the objective func-

tion for a given position x, is obtained by choosing u to be

colinear with v, that is, u? ¼ v=jjvjj2, and

h0x;u?ð0Þ ¼ �jjvjj2 þ k: (A6)

We then define

gðxÞ ¼ kvk2=k; (A7)

where gðxÞ � 1 when the objective function cannot be

decreased by adding a source.
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