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Abstract

Most research on source localization using arrays of antennas relies on the assumption that the array’s antennas are all sampled at
the same times. However, for RF signals, and especially in embedded systems, this is a very costly assumption to uphold.

In this paper, we consider the case where the antennas of the array are sampled by a single receiver channel, through the use of
a switch. The main advantage of such a system is to reduce costs, but on the other hand, the samples are not measured at the same
time on each antenna.

This paper deals with the design of the switching sequence that can dramatically impact the performance of sine parameters
estimation in applications such as source localization.

Cramér-Rao Bounds (CRB) are computed in order to derive design criteria. From their analytic expression, guidelines are
proposed in order to define switching sequences that provide good performances. In addition, numerical results allow to compare
the performance of the proposed sequences to relevant lower bounds and to the performance of sequences obtained by an exhaustive
search.

Keywords: Cramer-Rao Bounds, Array Signal Processing, Switched Array, Single Receiver, Source Localization.

Notations

• Indexing into a matrix or vector will be done using [·]i, j.

• Labeled variables are considered to belong to sets, and · is
used as a recursive centroid operator:
Example: Let ξ = {ξa, ∀a ∈ [1, A]}, where ξa = {ξa,b ∈

R, ∀b ∈ [1, B]}. The · operator can be used on the indi-
vidual sets ξa such that ξa = 1

B
∑B

b=1 ξa,b, or on the set ξ of
these sets: ξ = 1

A
∑A

a=1 ξa.

1. Introduction

Array signal processing has been a long-standing interest in
signal processing, with applications such as Direction of Ar-
rival (DOA) estimation [1], RADAR, imaging, etc. The most
conventional methods for array signal processing, illustrated in
Figure 1a, usually rely on matching each antenna with a re-
ceiver channel and an Analog-Digital Converter (ADC). The
main advantage of this architecture is to provide simultaneous
samples of the measured signal by each antenna.

However, for radio frequency (RF) applications for instance,
receiver channels and their synchronization can be rather costly
in many ways: most obviously financially, but also in terms of
space for components, as well as energy consumption. These
costs are especially an issue for embedded systems that may be
strongly constrained in terms of energy and volume.

To mitigate these costs, a trending approach is to use a single
receiver channel to sample all antennas, adding an electronic

switch to select from which antenna each sample is taken, as il-
lustrated in Figure 1b. This approach allows the removal of all
receiver channel hardware chains (bandpass filter, superhetero-
dyne, ADC...) but one; while an electronic switch and control-
ing hardware must be added.

Since the signals measured on each antenna are not sampled
simultaneously anymore, the design of such systems requires
choosing a switching sequence in order to define when each
antenna is sampled. An example of a signal received observed
through such a system is illustrated in Figure 2.
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Figure 1: Examples of two systems for sampling and processing of the signals
received by an array of antenna. On the left is the most classical system, asso-
ciating a receiver channel to each antenna. On the right is the subject of this
paper, where all antennas are sampled by a single receiver channel through a
switch.

Earlier applications of switched antenna arrays to DOA es-
timation were proposed in [2] and [3], based on a beamformer
network, and consists in measuring the signal power for sev-
eral sets of beamforming weights in order to estimate the array
covariance matrix. In [4], this method is generalized to a num-
ber of receiver channels larger than one, but smaller than the
number of antennas, using a time-varying preprocessing.

In [5] and [6], DOA estimation using a sequential switching
is considered (the switch is toggling from one antenna to the
next between every sample). This allows the use of classical
auto-covariance based algorithms such as MUSIC, with only a
slight modification to the steering vectors employed. Never-
theless, this approach necessitates the use of costly high speed
switches. To alleviate this issue, [6] also proposes using larger
blocks, switching to each antenna only once. Blocks of multiple
samples are also used in [7].

Switched arrays can also be used
in active arrays, such as Frequency-
Modulated Continuous Wave (FMCW) RADAR. In this
context, signals are usually sampled in blocks corresponding to
a pair of transmitting and receiving antennas. The case of linear
arrays, with a unique transmitter, is considered in [8]. Robust
estimation in the context of switched array FMCW RADAR
is introduced in [9]. Automotive applications are developed in
[10] and [11], where the influence of the order in which the
antennas are switched on the estimation of the performances
of the estimation is investigated. Cramér-Rao bounds for the
estimation of the direction, velocity and range of targets are
given in [12]. Calibration of fully-switched MIMO arrays is
considered in [13].

In this paper, we assume that the signals we measure can be
modeled as combinations of sinusoids in the interval where they
are sampled. We will focus on the optimization of switching se-
quences for the classical problem of the estimation of their pa-
rameters (angular frequencys, amplitudes, and phases). While
this problem arises in a large variety of applications, we con-

sider here the case of passive DOA estimation using Bluetooth
signals [14]. This context will guide our investigations, and
provide the numerical values of the parameters used in the sim-
ulations. However, our conclusions remain relevant in wider
contexts.
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Figure 2: Example of switching strategies: solid lines are the signals sampled
by the ADC.

The originality of this paper is to take into account hardware
constraints in order to design switching sequences. The main
constraint is that switching from one antenna to the other in-
troduces a delay that causes a loss of samples. It is a well-
known problem that is mentioned in the Constant Tone Exten-
sion (CTE) Bluetooth specification [15] for Bluetooth 5.1. Ob-
viously, sample loss can be avoided by the use of costly high
speed switches, but this solution is generally discarded since
the main goal of using a single received channel antenna is to
reduce the hardware costs.

Additionally, in this paper, we assume that the frequencies
of each source are unknown or poorly known and must be es-
timated. For example, the Bluetooth specification allows for
a deviation of up to ±75kHz around the nominal center fre-
quency, making said nominal frequency a worse guess than a
frequency estimation when working with a decent signal-to-
noise ratio (SNR), as will be shown later. We justify the need
for frequency estimation by the two following points:

• In DOA estimation problems, the frequency is part of the
parameters used to compute the array manifold, implying
that significant errors in the frequency will lead to errors
in the array manifold. However, this issue is small for
most applications, as the tolerated deviation of a center fre-
quency is typically much smaller than the center frequency
itself, by at least 5 orders of magnitude in Bluetooth’s case.

• As the signals received by the antennas are not sampled
simultaneously, an accurate estimation of the frequency is
necessary to estimate phase differences between two sig-
nals. Indeed, the phases of the signal have to be estimated
at a common point in time, at which at most one signal is
measured. Any mismatch between the actual frequency of
the signals and its estimation will lead to a proportional er-
ror in phases estimation. As an example, an error of 50kHz
on the center frequency is allowed by the Bluetooth spec-
ification, yet offsets the measured phase by 5% of a turn
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every microsecond away from the time reference (i.e., at
each sample with a sampling rate of 1 MHz). While it is
a non-issue for K-antenna-K-channel systems, as the sig-
nals are acquired simultaneously, it can be non-negligible
for switched systems where the samples associated to two
different antennas can be separated by a time delay such
that the phase error introduced by the frequency mismatch
is larger than the error introduced by measurement noise
by one or more orders of magnitude at decent SNR.

To our knowledge, there is no work in the literature which
deals with the issue of designing a switching sequence for si-
nusoidal parameter estimation in the case of a single receiver
channel. We will show that the choice of switching sequence
impacts dramatically the performance of the frequency and
phase estimates as it will be illustrated in section 3.

The main contribution of this paper is to provide tools to op-
timize the switching sequence. In other words, we answer to
the question: “when and which antenna must be sampled by
the unique ADC in order to get the most accurate estimation of
the parameters of a sinusoidal model”.

The method proposed to optimize switching sequence is the
following: first, the Cramér-Rao Bound (CRB) matrix is de-
rived for the model parameters; secondly, using the CRB ma-
trix, scalar design criteria are defined for the amplitudes, an-
gular frequency, and phases estimation respectively. The ana-
lytic expressions of these criteria allow us to provide some basic
rules to design smart switching strategies. Finally, strategies are
proposed and compared to theoretical lower bounds as well as
the criteria for the best sequence resulting of a quasi-exhaustive
search.

This paper will follow this structure: the data model is intro-
duced in Section 2, a preliminary example is proposed in Sec-
tion 3 in order to motivate this work. In Section 4, the Cramér-
Rao Lower Bounds (CRB) are derived and in Section 5 the de-
sign criteria are proposed. In Section 6 several ways of building
smart switching sequences are discussed, and the numerical re-
sults of Section 7 allow us to compare the performance of the
proposed switching sequences and to comment on the influence
of some parameters. Finally, conclusions are drawn in Section
8.

2. Model

2.1. Signal model
Assuming that the signal measured on each antenna (labeled

k) can be modeled as a sum of I complex exponential, the noise
free model is given by:

sk(t) =

I∑
i=1

Ai,kejφi,k exp(jωit), (1)

where ωi ∈ R, Ai,k ∈ R+ and φi,k ∈ [0, 2π] are the model param-
eters.

Let us show that the proposed model can be used to formulate
multi-source, multipath DOA 2D localization problems, while
not being restricted to this application. For this application,

relevant notably to the automotive industry, each source is con-
sidered to emit pure sines at different frequencies, which are
unknown or partially known to the receiver. Multipath propa-
gation channels can affect the received signal.

The pure sinusoidal nature of each source’s signal is justified
by an effort of the embedded systems’ industry to solve posi-
tioning problems, which has commonly resulted in means to
emit pure sines, such as the Constant Tone Extension (CTE),
added to the Bluetooth specification [15] in Bluetooth 5.1.

Consider a planar array of K antennas, labeled 1 through to
K, where the kth antenna has position ζk = (xk, yk)T , such that

the array’s centroid is 1
K

K∑
k=1

ζk = (0, 0)T , where ·T denotes trans-

posing the vector.
Consider I sources, the ith source emitting a sinusoidal signal

with an angular frequency ωi. Due to a multipath propagation
channel, for each source, Li reflections are impinging on the an-
tenna array, the lth path of the ith source’s signal is characterized
by its direction of arrival (αi,l) and complex amplitude (βi,l).

For each path, we also define the time of arrival at the cen-
troid of the array (τ(0)

i,l ); and the propagation delay (τk(αi,l)) be-
tween the centroid of the array and the kth antenna. Assuming
that the sources are in far-field and that the signals propagates
at a celerity of c, the delay at the kth antenna τk(α) can be ex-
pressed as a function of the direction of arrival α:

τk(α) =
1
c
ζT

k ·

(
cosα
sinα

)
. (2)

We can then write the noise-free received signal as follows:

sk(t) =

I∑
i=1

Li∑
l=1

βi,l exp(jωi(t − τk(αi,l) − τ
(0)
i,l )). (3)

Eq (3) can indeed be rewritten as the proposed model in eq (1)
where the complex magnitudes Ai,kejφi,k carry the information
for direction of arrival estimation and are written as:

Ai,kejφi,k =

Li∑
l=1

βi,l exp(jωi(τk(αi,l) + τ(0)
i,l )), (4)

In the following of this paper, we will focus on the bounds of
the variance of the estimates of ωi, Ai,k and φi,k. Indeed, these
parameters can be used to compute DOA estimations (as eq (4)
forms a system of equations that may be used to solve for αi,l),
but they have the advantage that they don’t require assuming
the geometry of the antenna network.

2.2. Measurement model
The key difference between more common systems (where

each antenna is sampled simultaneously by a corresponding re-
ceiver channel) and the single receiver channel system is that,
in the second case, the system has to switch from one antenna
to the other in order to measure samples. As a result, in the first
case, all the antenna are sampled at the same instants, while in
the second case, the sampling instants differ for each antenna
to the next. Let’s introduce a notation that allows us to reason
about sampling instants.
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Assuming that Nk samples are measured at the output of the
kth antenna, let Tk = {tk,n,∀n ∈ [1,Nk]} be the set of the Nk

sampling instants, where tk,n is the sampling instant of the nth

samples of the kth antenna. Similarly, let xk,n be the nth sample
measured at the output of the kth antenna, it can be written as:

xk,n = sk(tk,n) + εk,n, (5)

where εk,n is an additive complex noise supposed to be spatially
and temporally white with variance σ2.

Although this paper mainly focuses on the case of a single
receiver channel, this model, as well as the bounds and criteria
derived from it, aren’t restricted to this case. All the expressions
from sections 2, 4 and 5 are applicable to any system which
samples the signal of the K antennas through K or less receiver
channels. They are therefore applicable to subarray sampling
techniques, as proposed by [16] and developped upon by [17].

3. Preliminary example

We present here some simulation results in order to motivate
the work presented in this paper aiming at optimizing the choice
of switching sequences. As we will see below, the perfor-
mances are significantly impacted by the switching sequence.

To illustrate this fact, a simple example has been chosen:
consider only one source assuming that the noise is Gaussian,
measurements are performed with a four elements antenna ar-
ray with a switch fast enough such that no samples are lost dur-
ing the switching. For the sake of simplicity, we focus only on
frequency estimation (but, as shown in the following section, a
poor accuracy of the frequency estimate also degrades the phase
estimates).

Performance are evaluated using the Maximum Likelihood
Estimator (MLE). In this case (only one source with gaussian
noise), it is well known that the MLE criterion can be computed
by a Discrete-Time Fourier Transform (DTFT) defined by:

x̃(ν) =
1
K

K∑
k=1

∣∣∣∣∣∣∣
Nk∑

n=1

xk,n exp
(
−j2πν

tk,n
T

)∣∣∣∣∣∣∣
2

. (6)

The following parameters are used in the simulation: K = 4
antennas, sampling period is T = 1, source angular frequency
is ω1 = 0.2π which corresponds to a normalized frequency
ν1 = 0.1, the number of samples Nk = 32 is the same for each
antenna and Signal to Noise Ratio (SNR) is set to 10 dB.

For this example, we consider only basic sequences which
sequentially switch to the next antenna, the difference between
the sequences is the number of samples which are measured
on each antenna between each switching. These sequences are
illustrated in Figure 3. The MLE criteria associated to the fol-
lowing switching sequences are plotted in Figure 4:

1. Measuring one sample and then switching to the next an-
tenna: it requires N−1 switching operations (i.e., a switch-
ing for each sample).

2. Measuring Nk samples and then switching to the next an-
tenna: it requires only K − 1 switching operations (i.e., a
single samples block per antenna).

3. Measuring Nk
2 samples and then switching to the next an-

tenna: it requires 2K − 1 switching operations (i.e., two
samples blocks per antenna).

Sequence 1 Sequence 2 Sequence 3

Figure 3: Switching sequences used in this example, each dot represents a sam-
ple. Horizontal axis is time. Each vertical levels corresponds to one of the four
channels.

Note that while sampling all samples from a single antenna
would yield better frequency estimation than any of these other
techniques, it would also make phase estimation impossible for
the other antennas without either taking several measurements,
or an additional receiver channel; both cases not being consid-
ered by paper.
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Figure 4: Comparison of the MLE criterion for angular frequency estimation
with three sampling strategies.

The performance of the estimator is mainly impacted by
aliasing and the width of the peak (spectral resolution). From
Figure 4, one can notice that these three sequences provide cri-
teria with different features:

• Switching between each sample provides a narrow peak,
but causes spectrum aliasing. The aliasing is due to the fact
that the effective sampling rate on each antenna is divided
by the number of antennas.

• Switching between each block of Nk samples solves the
issue of spectrum aliasing, but the peak is wider. The poor
frequency resolution is due to the reduction of the length
of the observation window (in this case: NkT instead of
KNkT )

• The in-between method of switching twice to each antenna
provides a much narrower peak, while avoiding the issue
of spectrum aliasing. It does however display greater side
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lobes, due to the rather unconventional window function
this sampling equates to.

This example illustrates that the switching strategy can dra-
matically influence the performances of the estimators. It mo-
tivates our work to optimize the switching strategy in order to
provide the best performance for angular frequency and phase
estimation.

4. Cramér-Rao bounds

As a first step towards the design of sampling schemes, CRBs
are computed for the estimation of the amplitudes and phases,
and when applicable, angular frequency, of multiple sinusoidal
signals of identical frequency.

CRBs give a lower bound on the covariance matrix of an
unbiased estimator θ̂̂θ̂θ of a vector of parameters θθθ, in the sense
that the covariance matrix Σθ̂Σθ̂Σθ̂ of θ̂̂θ̂θ is necessarily larger (in the
Loewner order of semi-positive definite matrices) than the ma-
trix CRB, obtained as the inverse of the Fisher Information Ma-
trix (FIM). In particular, the variances of the estimation of the
parameters are bounded from below by the diagonal coefficients
of the matrix CRB.

In general, coefficients of the FIM F are given by the expecta-
tion of the second derivative of the log-likelihood function with
respect to the parameters.

In the particular case where measurements are modeled as a
complex random gaussian vector with mean s(θθθ) and constant
covariance matrix ΣεΣεΣε , the coefficients of F can be found using
the simpler Slepian-Bangs formula [18, 19, 20]

[F]i, j = 2Re
(
∂sH

∂ [θθθ]i
ΣεΣεΣε
−1 ∂s
∂ [θθθ] j

)
. (7)

A further simplification can be made when the measurement
noise is white, as the coefficients [F]i, j can be written as the
sum of the Fisher information of each sample. In our case, with
complex noise samples of variance 2σ2,

[F]i, j =

K∑
k=1

Nk∑
n=1

[
Fk,n

]
i, j , (8)

where [
Fk,n

]
i, j =

1
σ2 Re

(
∂sk,n

?

∂ [θθθ]i

∂sk,n

∂ [θθθ] j

)
. (9)

The coefficients of the FIM in the case of multiple sources
are given in appendix A. We will focus on the case of a unique
source with

sk,n = Akeiφk eiωtkn , (10)

where simple and interpretable bounds are found. We computed
these CRBs in two cases:

• known angular frequency ω, with parameters θθθ =

(A1, . . . , AK , φ1, . . . , φK),

• unknown angular frequency, with parameters θθθ′ =

(A1, . . . , AK , ω, φ1, . . . , φK).

Quantities (e.g. FIM, CRBs, etc.) associated to the unknown
angular frequency case will be identified by a prime symbol (·′)
when necessary.

4.1. Known angular frequency

A common assumption for DOA estimation is that the carrier
angular frequency is known. Under this assumption the Fisher
information matrix is diagonal:

F =

[
FA 0
0 Fφ

]
(11)

where the diagonals of the K × K blocks FA and Fφ are

[FA]k,k = Nk/σ
2 (12)[

Fφ

]
k,k

= A2
k Nk/σ

2. (13)

The CRB matrix as the same structure as F, where its two diag-
onal blocks CRBA and CRBφ, have diagonal coefficients given
by:

[CRBA]k,k =
σ2

Nk
(14)[

CRBφ

]
k,k

=
σ2

A2
k Nk

. (15)

4.2. Unknown angular frequency

As explained in the introduction, there are circumstances
where a source may emit a signal with an angular frequency
significantly different from the nominal one, hence the need to
estimate the angular frequency ω of the received signal.

In this case, the FIM takes the following shape:

F′ =


FA 0 0
0 Fω f?ω,φ
0 fω,φ Fφ

 (16)

with FA as in (12), Fφ as in (13), and

Fω =

K∑
k=1

A2
k

Nk∑
n=1

t2
kn/σ

2 (17)

[
fω,φ

]
k

= A2
k

Nk∑
n=1

tkn/σ
2 (18)

Owing to the diagonal block structure of F′, CRBs for the
estimates of A1 through AK remain the same as in eq (14), and
the CRB matrix CRB′ is structured as

CRB′ =


CRBA 0 0

0 CRBω crb?ω,φ
0 crbω,φ CRB′φ

 . (19)

After inversion of the remaining block associated to the an-
gular frequency and the phases (e.g. applying Cramer’s rule),
the bounds related to the angular frequency ω is

CRBω =
σ2

K∑
k=1

A2
k NkΛk

, (20)
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where Λk = 1
Nk

Nk∑
n=1

(tk,n − tk)2 is the dispersion of the sampling

instants of the kth antenna.
The block CRB′φ related to the phases (φ1, . . . , φK) has coef-

ficients [
CRB′φ

]
i, j

= δi, j
σ2

A2
i Ni

+ CRBωti t j (21)

where δi, j is the Kronecker symbol, and[
crbω,φ

]
k

= −CRBωtk. (22)

We note that, compared to the previous case, an additional
term appears in CRB′φ, due to the estimation error of the angular
frequency ω. This additional term is positive in the diagonal,
confirming the expected fact that phase estimation errors are
higher when the angular frequency is unknown.

4.3. Cyclic bounds

One can note that the parameters φk are 2π periodic and ω
is 2π fs. The provided CRBs bound the variance of unbiased
estimators, but they don’t take their periodicity into account.

Since the periodic estimates are bounded, the estimation er-
ror is bounded for low SNR, and the CRB cannot be considered
anymore in such regimes.

To take the estimator’s periodicity into account, [21] pro-
poses to measure the error of an estimator using the Mean
Cyclic Error (MCE) instead of the MSE, the latter being equiv-
alent to the estimator’s variance when the estimator is unbiased:

MCEφk∈[0,2π] = E
[∣∣∣∣1 − ej

(
φ̂k−φk

)∣∣∣∣2] , (23)

[21] then shows that a bound on the MCE can be derived
from a bound on the MSE. Namely, CRBcyc

φk∈[0,2π] can be derived
from CRBφk

CRBcyc
φk∈[0,2π] = 2 − 2(1 + CRBφk )

− 1
2 (24)

To keep the MCE’s useful properties of being a lower bound
for the MSE and converging with it for smaller values, even
when the estimator’s period ν , 2π, the following expression
of the MCE may be used for the angular frequency estimator:

MCEω∈[0,2π fs] = f 2
s E

[∣∣∣∣1 − ej ω̂−ωfs

∣∣∣∣2] , (25)

This expression of the MCE is then bound by:

CRBcyc
ω∈[0,2π fs]

= 2 f 2
s − 2 f 2

s

(
1 +

CRBω

f 2
s

)− 1
2

. (26)

Note that the cyclic and non-cyclic bounds converge for lower
values, as do the MSE and MCE.

4.4. Numerical validation

To validate the analytical expressions of the CRBs, Monte-
Carlo simulations were used to estimate the MSE and MCE of
the Maximum Likelihood Estimator, and compare them with
the corresponding CRBs and cyclic CRBs.

The MLE is defined by θ̂′ = argmax
θ′

l(x|θ′, σ) where

l(x|θ′, σ) is the log-likelihood of the measured signal x, and in
our case is written:

l(x|θ′, σ) =

K∑
k=1

Nk∑
n=1

(
− log(2πσ2) −

1
2σ2

∣∣∣xk,n − sk,n(θ′)
∣∣∣2).

(27)

During simulations, the parameters were estimated using gra-
dient descent, with an initial parameters vector θ′0 computed by
a Discrete Fourier Transform (equivalent to a grid search of the
MLE).

The simulations were run with various SNRs, with a refer-
ence θ′ corresponding to physical parameters relevant to our ap-
plication (Bluetooth Low Energy): a signal with f = 2.4GHz,
impinging from θ = π on a circular array of K = 4 antennas and
radius r = 0.5m, sampled at N = 160 points with sample rate
fs = 1MHz, switching antenna instantly (D = 0) between each
sample. 10000 trials were used to estimate the performances.

The results of these simulations are displayed on Figures
5 and 6, where the MSE, MCE and corresponding CRBs are
ploted with respect to the SNR, for frequency and phase esti-
mation respectively.

As can be observed on Figures 5 and 6, the MCE and MSE
converge with both the periodic and aperiodic bounds in the
asymptotic low-noise regime [22].

Tighter bounds could be obtained in low SNR regimes, for
example with Barankin bounds ([23]). However, our applica-
tion domain (source localization over Bluetooth communica-
tions) tends to guarantee high SNR (15dB being required for
a better than 0.1% Binary Error Rate ([24, 25]), which is the
highest allowed in Bluetooth before packet rejection), such that
these bound aren’t necessary.

Note from Figure 5 that for this lowest acceptable SNR of
15dB, the standard deviation on frequency estimation is of less
than 10Hz. Thus, estimating the frequency yields a much better
estimate of its value than the nominal value, which tolerates a
discrepancy of up to ±75kHz.

Since the aperiodic bounds allow analytical simplifications,
and converge with the periodic ones where they are relevant to
our application, we will keep using the aperiodic bounds for the
rest of this paper.
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5. Design criteria

In a multivariate setting, CRBs cannot be readily used to
compare sampling designs. Indeed, it is not always possible
to compare the CRBs of two different designs, as the Loewner
order is not total.

5.1. Criteria definition

Following the approach of optimal design of experiments (in
particular, A-optimal designs) [26], we will use three scalar cri-
teria Γω, ΓA, and Γφ, related to the angular frequency, ampli-
tudes, and phases respectively.

The criterion for the angular frequency is simply its CRB:

Γω = CRBω. (28)

For the amplitudes, we define ΓA as the sum of the CRBs of
the amplitudes at each antenna (or, equivalently up to a multi-

plicative constant, their mean):

ΓA =

K∑
k=1

[CRBA]k,k (29)

=

K∑
k=1

σ2

Nk
. (30)

Using the same type of criterion for the phases yields in the
known angular frequency case

K∑
k=1

[
CRBφ

]
k,k

=
σ2

A2
k Nk

, (31)

and in the unknown angular frequency case

K∑
k=1

[
CRB′φ

]
k,k

=

K∑
k=1

σ2

A2
k Nk

+ CRBω

K∑
k=1

(tk)2. (32)

In the latter case, this first criterion cannot be used to rank
sampling designs. Indeed, shifting the time axis (which is
equivalent to applying a constant phase shift over all antennas)
should not influence the estimation error of direction of arrival,
as the model is time invariant, whereas (32) is affected by such a
shift. Likewise, the criterion should not take into account phase
estimation errors common to all antennas.

For a better characterization of the performances of a switch-
ing strategie, we consider the centered estimators

φ̂c
k = φ̂k − φ̂, (33)

obtained by removing the average of the estimation of the
phases. This modification has no effect on the estimation of
directions of arrival, and thus its variance. The sum of the vari-
ances of the estimated phases can be decomposed as

K∑
k=1

var
(
φ̂k

)
=

K∑
k=1

var
(
φ̂c

k

)
+ Kvar

(
φ̂
)
, (34)

where the second term has no influence on the DOA estimation
error.

We propose to define Γφ as a lower bound of the first compo-

nent
K∑

k=1
var

(
φ̂c

k

)
. The estimators φ̂c

k can be written as φ̂c
k = mk φ̂φφ,

where [mk]i∈[1,K] = δi,k −
1
K and φ̂φφ is the vector of the esti-

mates φ̂k. The variance of the centered estimators are var
(
φ̂c

k

)
=

mk Σφ mk
∗, where Σφ is the covariance matrix of φ̂φφ. Moreover,

as Σφ and CRBφ are principal blocks of Σθ and CRB respec-
tively, Σφ is bounded from below by CRBφ in the Loewner or-
der. The variance of each centered estimator φ̂c

k can then be
bounded by

var
(
φ̂c

k

)
= mk Σφ mk

∗ (35)

≥ mk CRBφ mk
∗. (36)
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Finally, the criterion for phases, in the known angular frequency
case, is

Γφ =

K∑
k=1

mk CRBφ mk
∗ (37)

=
K − 1

K

K∑
k=1

σ2

A2
k Nk

. (38)

The same approach in the unknown angular frequency case
yields the criterion

Γ′φ =

K∑
k=1

mk CRB′φ mk
∗ (39)

=

Γφ︷              ︸︸              ︷
K − 1

K

K∑
k=1

σ2

A2
k Nk

+

Γ2︷                 ︸︸                 ︷
CRBω

K∑
k=1

(tk − t)2 . (40)

We emphasize here the fact that Γ′φ is time-invariant: replac-
ing the sampling times tkn by tkn+δ for an arbitrary shift δ leaves
Γ′φ constant.

5.2. Interpretation of the criteria
Using the criteria defined above, properties of efficient sam-

pling designs can be outlined. For the sake of simplicity, we
will assume the amplitudes Ak are equal, as is the case of DOA
estimation for far-field sources with a single path.

The criterion ΓA, common to the known and unknown angu-
lar frequency cases, is minimized when the number of samples
is similar on each antenna. Indeed, the relaxed minimization
problem

min
zk∈R+

K∑
k=1

1
zk

such that
K∑

k=1

zn = N (41)

has solution zk = N/K. Minimization of Γφ is obtained under
the same condition.

In the unknown angular frequency case, Γω is minimized
when the average dispersion Λ of the samples is maximized,
implying that for each antenna, the samples should be spread
the most possible. Finally, the criterion Γ′φ is the sum of two
terms Γφ and Γ2. As above, minimizing the first term Γφ im-
plies similar numbers of samples for each antenna. The second
term is the product of the CRB of the angular frequency and the
spread of the average of the sampling times on each antenna.
Thus, the spread of the sampling instants should be maximized
on each antenna, while concurrently the mean sampling times
of the antennas should be similar.

5.3. Numerical validation
Monte-Carlo simultations were used (using the same param-

eters as in subsection 4.4) to validate the criteria discussed
above.

On Figure 7, the RMSE of the MLE of the centered phases
and its bound

√
Γ′φ. As expected, the RMSE converges to the

bound for high SNR.

Since the estimates of φ are bounded (as discussed in subsec-
tion 4.3), the same applies to φc.
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Figure 7: Deviation of the estimates of φc and corresponding bound
√

Γ′φ.

6. Switching sequences and strategies

In the previous section, Cramér-Rao bounds, as well as the
bound Γ′φ on the variances of the estimated centered phases,
were given for arbitrary times tk,n. Because Γ′φ is non-convex in
function of the sampling times, and because of the large num-
ber of variables, minimization of Γ′φ is an intractable problem.
In this section, using design constraints imposed by typical RF
equipment, the complexity of the optimization problem is re-
duced.

6.1. Defining switching sequences

In order to restrict the search space for the optimization of the
lower bound Γ′φ, some assumptions are made on the switching
sequences:

• for each antenna, sampling times are assumed to be drawn
from an underlying regular sampling of the window of pe-
riod Ts,

• at any given time, at most one antenna is active,

• switching between antennas implies a loss of D samples.

Under these assumptions, a switching sequence is characterized
by its number M of blocks (that are defined as consecutive sam-
ples on a given antenna), their length Lm, and S m, the index of
the selected antenna in the mth block. An example of such a
description is given in figure 8.

The number of lost samples D is due to the switching delay
that occurs when switching between antennas. Note that while
D = 0 is possible (i.e. switching is guaranteed to have happened
at the predicted time, and that signals have stabilized before the
next sample), it requires the hardware to be able to reliably start
switching between antennas after a given nth sample and for the
new signal to have stabilized before the next sample is to be
taken. Doing so when working with radio-waves may require

8



specialized and costly hardware. We will assume that D is a
constant associated with any given system.

L1 = 26

S 1 = 1 D = 5

L2 = 30

S 2 = 2

D = 5

L3 = 35

S 3 = 3

D = 5

L4 = 25

S 4 = 2

D = 5

L5 = 24

S 5 = 4

N = (M − 1)D +
M∑

m=1
Lm = 160

Figure 8: Example of a switching sequence

Still, even expressed as such, the search space for an optimal
strategy is immense. To further reduce its dimension, we im-
pose the additional constraint that all sampling blocks have the
same size B, except for a unique block of length r < B + D,
named “remainder block”.

6.2. Simple sequences

The following sequences are the sequences we have found
used either in other papers, or used within the industry, and
are usually the result of applying intuition to the selection of a
switching sequence.

6.2.1. Switching between each sample
One simple form of sampling would be switching between

each sample, as done in [5] and [6]. As long as D = 0, this
strategy provides good results, as the spread of the samples for
a given antenna is large, and the mean sampling times for each
antenna are close. However, in cases where D > 0, switch-
ing between each sample implies the loss of numerous samples,
leaving approximately N/(1 + D) samples available to estimate
of the signal parameters instead of N.

An additional limitation of this sequence is the reduced range
for the estimation of the angular frequency ω, as each antenna’s
sampling is decimated by a factor of K(D + 1). This limitation
can be mitigated by using a higher sampling rate and a propor-
tionally faster switch, which comes at a higher cost.

6.2.2. One block per antenna
Opposite to switching between each sample, this strategy at-

tempts to minimize the losses incurred by discarding D > 0
samples between each block: it reduces the number of blocks
to the bare minimum: with B =

⌊
N
K

⌋
, only one block is used per

antenna, obtaining the maximum total of N−D(K−1) samples,
distributed as fairly as possible.

While this strategy minimizes Γφ (and is thus optimal when
the angular frequency ω is known), its performances are de-
graded when the angular frequency ω has to be estimated. In-
deed, with one block per antenna, the dispersion of the samples
for each antenna is limited, which implies a large lower bound
CRBω. Moreover, the dispersion of the mean sampling times
for each antenna is large, yielding a large Γ2 component for the
bound Γ′φ.

6.3. Exhaustive search

As the number of possible sequences under the above as-
sumptions is finite for a given block size B, an exhaustive search
for the best lower bound Γφ can be performed.

Every unique switching sequence possible with a given B
was generated, for every position of the rest block; in the case
where two consecutive blocks were assigned to the same an-
tenna, the blocks were fused, including the D samples in be-
tween.

This way of exploring meant that for any given B, the search
space for an optimal value of Γφ grows exponentially with re-
gard to the maximum number of blocks that can be formed
Mmax =

⌈
N

B+D

⌉
. This meant that we could only run combinatory

searches within reasonable computing times for smaller values
of Mmax.

6.4. Strategies

Since exhaustive search is not tractable for the smallest val-
ues of B, we propose two strategies to build switching se-
quences, as illustrated in Figure 9.

Two types of sequences are tested, with varying block size B.

Rotation Mirrored Rotation

1 2 3 4 5 6 7 8 9 10 11 12 i 1 12 23 34 45 56 6
S i = 4 S i = 4

S i = 3 S i = 3

S i = 2 S i = 2

S i = 1 S i = 1

r

r

Figure 9: Rotation and mirrored rotation sequences, with 12 blocks for 4 an-
tennas.

6.4.1. Rotation
The Rotation strategy switches from one antenna to the next

every B samples, in a circular fashion. The sequence is de-
scribed by S m = m mod K and Lm = B (except for the last block
of length r, which collects the remaining samples).

An advantage of this method is that the set of sampling times
of the different antennas are related by a translation, which can
be convenient for algorithms that rely on snapshots being taken
with time axes that are translations of each other (such as ES-
PRIT or MUSIC [1]).

Remark: the simple sequences introduced in Section 6.2 may
be generated by this strategy, with parameters B = 1 (6.2.1), or
M = K (6.2.2). All sequences used in the example provided in
Section 3 may also be generated for K = 4 and N = 128 by the
Rotation strategy with parameters B = 1, B = 32 and B = 16,
respectively.

6.4.2. Mirrored Rotation
The Mirrored Rotation strategy applies the Rotation strategy

to the first
⌈

N
2

⌉
samples, followed by its reverse, as illustrated in

Figure 9.
The symmetry of the sequence guarantees that the sample

sets of each antenna share the same centroid nullifying the Γ2
term in the lower bound Γ′φ.
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A limitation of this sequence, in particular compared to the
Rotation sequence, is that sampling sets do not have the same
shape for different antennas, which may complicate the task of
forming snapshots for e.g. the application of the MUSIC algo-
rithm.

7. Results

In this section, values of the criterion Γω and Γ′φ are dis-
cussed. Firstly, numerical values of the criteria are plotted in
function of the block size for the strategies introduced in the
above section, with fixed number of antennas K and window
length N. Then, asymptotic values are given for large K and N.

7.1. Criteria in function of the block size

The simulation results presented in this section have been ob-
tained with parameters values relevant to the application for the
localization of Bluetooth Low Energy emitters. The number of
antenna is K = 4, the source frequency is 2.4GHz, sampling
rate is fixed to fs = 1MHz, the total number of samples (in-
cluded discarded samples) is N = 160, the number of discarded
samples during each switching is D = 3. These parameters are
derived from the CTE part of the Bluetooth specifications [15].

For simplicity, we assume that Ai = A j ∀i, j. The SNR for all
the following figures is 20 dB.

The Figure 10 shows the main optimization criterion Γ′φ de-
fined in eq (40) with respect to the block length (B) for the
particular case where the switching follows a Rotation strategy
as defined in section 6.

0 10 20 30 40 50
Block Length (B)
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1e(4 Components of the optimization c ite ion (Γ′
ϕ)

Γϕ
Γ2
Γ′
ϕ

Γ′
ϕ, Switching between eve y sample

Γ′
ϕ, Sampling each antenna once

Figure 10: Optimization criterion Γ′φ = Γφ + Γ2 and its components against the
block length B, using the Rotation strategy, with K = 4,D = 3 and N = 160.

This example shows that the block length can dramatically
impact the performance of the estimator (remind that Γ′φ is
a lower bound of the sum of the variances of the estimated
phases). In particular, the two simplest strategies (often pro-
posed in the literature) are far from the optimal: switching be-
tween each sample (marker ’o’) or switching only each antenna

once (marker ’+’) increases respectively 3 or 6 times the crite-
rion with respect to its lowest value. This remark motivates the
search of optimal switching strategy.

In order to understand the behavior of the Γ′φ curve, we ana-
lyze separately the two terms Γφ and Γ2 of eq (40). First, one
can notice that neither Γφ nor Γ2 is negligible.

Let consider Γφ and remind that, from eq (38), it is minimized
when the number of samples is maximal on each antenna and
consequently:

• when the block length is small (B . 10), the number of
blocks grows and with it, the number of samples discarded
due to switching delays, which mostly increases Γφ,

• when the block length is too high (B & 48), the number of
samples for the last block is close to zero, causing a sharp
increase of the variance of the phase in the last antenna,
and of Γφ.

Focusing on Γ2, from eq (40), it is clear that the minimiza-
tion of this term requires that the centroids tk of the sampling
instants are the same for each antenna and/or that the average
dispersion of sampling instants is large. The second conditions
is verified when the block length is small enough (B . 30) so
that at least one antenna has at least two separated blocks. Con-
trariwise, for B & 35, the antennas are sampled by a unique
block of limited dispersion, implying large values of Γ2.

Coming back to Γ′φ curve, one can note that a large range
of value allows to roughly minimize the criterion (20 . B .
30). The exact value of B which minimizes Γ′φ depends on the
switching delay (and thus on D): obviously, when D increases,
the number of switching must be reduced (and thus B should be
greater). Empirically, we find that even with high values of D,
at least K + 1 sampling blocks should be made in order to take
advantage of the massive drop in Γ2 caused by doing so.

0 10 20 30 40 50
Block leng h B

10−5

10−4

Ph
as

e 
cr
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n 
Γ′ ϕ
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Bes  Sequence (argminΓ′
ϕ)

Ro a ion
Mirrored Ro a ion
Γ′
ϕ, Swi ching be ween every sample

Γ′
ϕ, Sampling each an enna once

Figure 11: Phase criterion Γ′φ against blocks length. Comparison of three strate-
gies with equal blocks size: Rotation, Mirrored Rotation strategies and optimal
sequence.
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Figure 12: Angular frequency criterion Γω against blocks length. Comparison
of three strategies with equal blocks size: Rotation, Mirrored Rotation strate-
gies and optimal sequence.

Figures 11 and 12 allow to compare the switching strategies
presented in section 6. The lower bound Γφ,min plotted for refer-
ence in Figure 11 is obtained by discarding the second term Γ2,
by assuming that D = 0 and that there are the same number of
samples on each antenna (N1 = N2 = . . . = NK = N

K ) such that:

Γφ,min =
K − 1

N

K∑
k=1

σ2

A2
k

. (42)

Similarly, in Figure 12, a lower bound Γω,min is obtained by
considering the case where the signal would be sampled on a
single antenna, discarding no samples:

Γω,min =
σ2

A2
1

N∑
n=1

(
nTs −

(N+1)Ts
2

)2
(43)

As pointed above, the simplest sequences (see Section 6.2)
plotted with markers ’+’ and ’o’ provide performances far from
the optimal.

As expected, the exhaustive search among fixed block length
sequences provides the best result and approaches the optimal
lower bound. Both the rotation and mirrored strategies reach its
performances for 25 . B . 38 and B ≈ 20 respectively.

7.2. DOA estimation

Addressing the specific issue of DOA estimation with a sin-
gle receiver channel, one can wonder if the results established
above are useful to design switching sequences in order to re-
duce DOA estimation errors.

To calculate the bounds on the DOA estimation errors, the
antenna geometry must be taken into account, making it diffi-
cult to obtain generic results. In addition, analytical expressions
of the bounds seem untractable.

For these reasons, we focus on numerical evaluation of these
bounds, for a 20cm wide Uniform Linear Array (ULA) and a
Uniform Circular Array (UCA) with a diameter of 20cm; each
array being made of K = 4 antennas.

The FIM for DOA estimation in the single signal, single di-
rection, case can be derived from eq (3) as shown in appendix
C, and be numerically inverted to provide bounds for specific
geometries that take the switching sequence into account.

Figures 13 and 14 allow us to compare the variations of the
Γ′φ criterion and CRBα with respect to the bloc length B with
the Rotation and Mirrored Rotation strategies.
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0.00004
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CR
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Γ′
ϕ
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Γ′
ϕ
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CRBα(Rotate)
CRBα(Mirrored)

Figure 13: Phase criterion Γ′φ and CRBα against blocks length, for a K = 4
elements, 20cm diameter Uniform Circular Antenna.
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Figure 14: Phase criterion Γ′φ and CRBα against blocks length, for a K = 4
elements, 20cm wide Uniform Linear Antenna.

These figures illustrate that Γ′φ varies similarly with the ac-
curacy of DOA estimation, despite being computed with no
knowledge of the array that the switching sequence would be
used with.

Figure 14 does however show that when working with known
array geometries, it may be wiser to compute the DOA bound
directly (as provided in appendix C), as the Γ′φ criterion will
not necessarily have exactly the same minimum as the DOA
estimation bound.

However, the DOA bounds for both the ULA and UCA match
the Γ′φ criterion with regard to how both of the simple switch-
ing sequences (switching between each sample and switching
to each antenna exactly once) offer poor performances.
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7.3. Asymptotic analysis of the criteria

Approximate values of the criteria are given on table 1 in the
asymptotic regime for a large number of antennas K and a large
window length N, using D = 0 and uniform amplitudes Ak = A.
They are given for the rotation strategy with M = K (one block
for each antenna), M = K + 1 (the last block is allocated to the
same antenna as the first one), and M = 2K (each antenna is
visited twice). Results are also given for the mirrored strategy
where the second half of the rotation strategy with M = 2K is
reversed, and for a K receiver channels system which samples
the signal for the same duration as the other systems, taking the
same total number of samples.

Strategy Parameters ΓA, Γφ Γω Γ2 Γ′φ

Rotation M = K K2

N
12K2

N3
K3

N
K3

N
Rotation M = K + 1 K2

N
2K
N3

K2

6N
7
6

K2

N
Rotation M = 2K K2

N
16
N3

K
3N

K2

N
Mirrored Rotation M = 2K K2

N
12
N3 0 K2

N
K channels Nk = N/K K2

N
12
N3 0 K2

N

Table 1: Asymptotic values of the criteria with large number of antennas K and
window length N. Actual values are obtained by multiplying Γ by σ2, Γφ, Γ′φ

and Γ2 by σ2/A2, and Γω by σ2/(T 2
s A2). The ”K channels” line corresponds to

a system with one channel per antenna, taking Nk = N/K synchronized samples
per antenna over the same duration as the switched systems.

Firstly, notice that the ΓA and Γφ, respectively the amplitude
criterion and the phase criterion when the frequency is known,
do not vary with respect to the sequence.

When each antenna is only visited once (Rotation, M = K),
the frequency criterion Γω scales with K2, implying a large
value for the Γ2 term of Γ′φ, the phase criterion when frequency
is unknown.

Visiting the first antenna again at the end of the sequence
(Rotation, M = K + 1) reduces Γω by an order of magnitude
in K, giving Γ2 the same order as Γφ, thus making Γ′φ the same
order as Γφ, yet larger.

When each antenna is visited twice in identical order (Rota-
tion, M = 2K), the bound Γω is of the same order as the bound
on frequency estimation with a single antenna. The Γ2 term be-
comes of lower order than Γφ: Γ′φ becomes of the same order as
its known freqency equivalent Γφ.

Finally, Γω is of exactly the order of single antenna frequency
estimation both when visiting each antenna twice in opposite
orders (Mirrored Rotation) and when sampling all antennas at
the same times. In both cases, Γ2 = 0 and Γ′φ = Γφ.

With the last 3 sampling sets, Γ′φ is either marginally or not
affected by the necessity of estimating the frequency.

7.4. Discussion

Although the problem of finding the best switching sequence
for the criteria defined above is not solved due to its combinato-
rial challenge, the numerical and asymptotic values of the crite-
ria allow outlining some key features that switching sequences
should have to allow good estimation performances.

Three key points are necessary to assure good performances:

• high dispersion of sampling instants must be guaranteed at
least one antenna,

• the number of samples must be roughly the same for each
antenna,

• the number of switching (or equivalently the number of
blocks per antennas) should be limited to avoid discarding
too many samples.

In any case, as discussed above, the number of blocks should
be K + 1 or greater in order to provide a high instant sampling
dispersion.

The mirrored strategy, for which Γ2 is zero, exhibits perfor-
mances that are not affected by the necessity to estimate the an-
gular frequency, and was shown to be the best strategy in both
numerical and asymptotic results.

Although its performances are slightly lower than the mir-
rored strategy, the Rotation strategy with 2K blocks has the
advantage of having a simple structure. Indeed, the sampling
times of each antenna are related by a time delay, allowing the
use of subspace estimation methods such as MUSIC.

8. Conclusion

In this study, we aimed to improve the way arrays of antennas
are sampled through a switch by a single receiver channel, as
this type of setup is gaining popularity, especially in embedded
RF solutions.

By computing the Cramér-Rao Bound, we have been able to
propose readable analytic forms of design criteria to propose
switching sequences. This analysis allows to give guidelines to
attain better performances without hardware changes: switch-
ing sequences should distribute roughly the same number of
samples between antennas and attempt to reduce the number
of samples lost due to switching. In addition, when the an-
gular frequency must be estimated, the dispersion of sampling
instants must be maximized for at least one of the antennas, and
each set of sampling instants should share the same centroid.

Strategies to define switching sequences have been proposed
and compared to the simple sequences typically used in the pre-
vious works on switched arrays. Numerical results show that
said sequences can provide poor performances, especially when
estimating the angular frequency. The proposed Mirrored Rota-
tion strategy reaches the performance of the sequence obtained
by an exhaustive search; whereas the Rotation strategy with
M = 2K still provides good performances while being more
convenient for classical algorithms such as MUSIC.

A. Fisher’s Information Matrix

Although section 4 only shows the FIM for the case where
the signal is a single sine, as only this case can be inverted an-
alytically with legible results, the FIM F′ for multiple sines of
unknown frequencies with an AWGN of variance 2σ2 is still
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writable as:

F′ =


F′(1,1) F′(1,2) . . . F′(1,I)

F′(2,1) F′(2,2) . . . F′(2,I)

...
...

. . .
...

F′(I,1) F′(I,2) . . . F′(I,I)

 (44)

with

F′(i, j) = F′( j,i)T
=


F(i, j)

A,A f(i, j)
A,ω F(i, j)

A,φ

f(i, j)
A,ω

T
f (i, j)
ω,ω f(i, j)

ω,φ

T

F(i, j)
A,φ

T
f(i, j)
ω,φ F(i, j)

φ,φ

 (45)

where F′(i, j) pertains to the ith and jth sources, F(i, j)
A,A , F(i, j)

φ,φ and

F(i, j)
A,φ are diagonal matrices, and f(i, j)

A,ω and f(i, j)
ω,φ are column vectors

such that:

σ2
[
F(i, j)

A,A

]
k,k

=

Nk∑
n=1

cos(∆i, j,k,n) (46)

σ2
[
F(i, j)
φ,φ

]
k,k

= Ai,kA j,k

Nk∑
n=1

cos(∆i, j,k,n) (47)

σ2
[
F(i, j)

A,φ

]
k,k

= −A j,k

Nk∑
n=1

sin(∆i, j,k,n) (48)

σ2 f (i, j)
ω,ω =

K∑
k=1

Ai,kA j,k

Nk∑
n=1

t2
k,n cos(∆i, j,k,n) (49)

σ2
[
f(i, j)

A,ω

]
k

= −A j,k

Nk∑
n=1

tk,n sin(∆i, j,k,n) (50)

σ2
[
f(i, j)
ω,φ

]
k

= Ai,kA j,k

Nk∑
n=1

tk,n cos(∆i, j,k,n) (51)

where ∆i, j,k,n = (ωi − ω j)tk,n + φi,k − φ j,k (52)

The FIM F for multiple sines of known frequencies under the
same noise conditions can be similarly written:

F =


F(1,1) F(1,2) . . . F(1,I)

F(2,1) F(2,2) . . . F(2,I)

...
...

. . .
...

F(I,1) F(I,2) . . . F(I,I)

 (53)

with

F(i, j) = F( j,i)T
=

 F(i, j)
A,A F(i, j)

A,φ

F(i, j)
A,φ

T
F(i, j)
φ,φ

 (54)

Note that ∆i,i,k,n = 0∀i, k, n, leading to the simpler structure
of the FIM for a single sine as used in section 4.

B. Inversion of the FIM

The block of the FIM F′ related to the frequency ω and the
phases φ has the shape of the following matrix M:

M =



a0 a1 a2 · · · aK

a1 b1 0 · · · 0
a2 0 b2 0
...

...
. . .

...
aK 0 0 · · · bK


(55)

Using Laplace decomposition, the determinant of M is

det M =

a0 −

N∑
n=1

a2
n

bn

∏ bn (56)

By using Cramer’s rule and remarking that the minors of M
have the same shape, the coefficients of the inverse of M−1 =

(mi j)0≤i, j≤K are found as:

m00 =
1

a0 −
∑K

k=1
a2

k
bk

(57)

m0k = mk0 = −
ak

bk
m00 (58)

mkk =
1
bn

+
a2

k

b2
k

m00 (59)

mi j =
aia j

bib j
m00 (60)

C. DOA estimation FIM

Using the model given by eq (3), and assuming a circular
complex Gaussian white noise, the FIM G for the DOA esti-
mation parameters with unknown frequency may be computed
using the Slepian-Bangs formula.

Using the estimated parameters vector [β1,1, α1,1, ω1, τ
(0)
1,1]

(further noted [β, α, ω, τ]), we can write :

σ2G =



K∑
k=1

Nk 0 0 0

0 Gα,α Gα,ω Gα,τ

0 Gα,ω Gω,ω Gω,τ

0 Gα,τ Gω,τ ω2β2
K∑

k=1
Nk


(61)

Gα,α = ω2β2
K∑

k=1

Nk

(
∂τk(α)
∂α

)2

(62)

Gω,ω = β2
K∑

k=1

Nk∑
n=1

(
tk,n − τk(α) − τ(0)

)2
(63)

Gα,τ = ω2β2
K∑

k=1

Nk
∂τk(α)
∂α

(64)

Gα,ω = −ωβ2
K∑

k=1

∂τk(α)
∂α

Nk∑
n=1

tk,n − τk(α) − τ(0) (65)

Gω,τ = −ωβ2
K∑

k=1

Nk∑
n=1

tk,n − τk(α) − τ(0) (66)
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