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ABSTRACT

In this paper, we investigate the optimal ways to sample multichan-
nel impulse responses, composed of a small number of exponen-
tially damped sinusoids, under the constraint that the total number of
samples is fixed - for instance with limited storage / computational
power. We compute Cramér-Rao bounds for multichannel estima-
tion of the parameters of a damped sinusoid. These bounds provide
the length during which the signals should be measured to get the
best results, roughly at 2 times the typical decay time of the sinu-
soid. Due to bandwidth constraints, the signals are best sampled
irregularly, and variants of Matching Pursuit and MUSIC adapted
to the irregular sampling and multichannel data are compared to the
Cramér-Rao bounds. In practical situation, this method leads to sav-
ings in terms of memory, data throughput and computational com-
plexity.

Index Terms— compressed sensing, spectral analysis, array
signal processing

1. INTRODUCTION

Array processing techniques have proved extremely powerful for
many tasks in signal processing. To name but a few of these tech-
niques, we can mention the remarkable achievements of beamform-
ing [1], holography [2], Synthetic Aperture Radar [3] etc. However,
there are a many practical situations, typically when a high band-
width is needed, where such techniques lead to an extremely large
number of samples, which in turn leads to stringent experimental
constraints on the acquisition devices that need to cope with high
data throughput and large storage capabilities. Processing these sig-
nals can also involve very large computational costs.

In most of these techniques, such as in the Nearfield Acoustic
Holography (NAH) [2] that motivates this study, the acquired sig-
nals have a very specific structure, as the different sensors typically
acquire different “views” of the same source, therefore sharing a lot
of characteristics. For instance, in NAH used to visualize resonating
modes of vibrating structures with an array of microphones, every
signal is a sum of a few sinusoids (one per mode, in the simplest
non-degenerated case), whose frequencies (and damping factor if
relevant) are shared across all microphones. Here, individual mi-
crophone signals only differ by the amplitude and phase of each si-
nusoid, and that is precisely the information that is needed to image
the vibration of the structure. It should be noted too that, in frequent
experimental cases, these signals are corrupted by strong noise.
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In view of this remarkable multichannel signal structure, this
paper investigates the use of non-uniform sampling techniques to
get the best estimation of these parameters for a fixed total number
of samples. Reducing the number of samples not only reduces the
global data throughput and the storage space needed to record the
signals, in some cases it also reduces the computational complex-
ity of the processing, as shown in this paper. It can be noted that
incorporating prior information on the structure of the signal at the
sampling stage is very much in the spirit of compressed sensing tech-
niques, although the sinusoidal nature of the signals allows the use
of specific resolution techniques.

In order to recover the parameters of the sinusoids from the non-
uniform samples, we have studied two algorithms. The first one is an
adaptation of Simultaneous Orthogonal Matching Pursuit (SOMP)
[4], a generic multichannel sparse recovery algorithm. This exten-
sion is rather straightforward in the case of undamped sinusoids. The
second one is based on the high resolution spectral estimator MU-
SIC (MUltiple SIgnal Classification) [5]. As we shall demonstrate,
this technique can be extended in a natural way to our multichannel,
non-uniformly sampled problem, with possibly damped sinusoids.

To summarize the original contributions of this paper, it presents
a full study on how to handle non-uniform sampling for multichannel
damped sinusoids (data model introduced section 2):

• the computation of Cramér-Rao bounds for the estimation of
the signal components (section 3),

• the investigation of the optimal observation length, that as we
shall demonstrate should be roughly 2 times the typical decay
time of the signal (section 4),

• The generalization of two estimation algorithms, SOMP (sec-
tion 5) and MUSIC (section 6), and the comparison of their
performance in terms of precision, resolution, and computa-
tional cost (section 7).

2. DATA MODEL

The signals measured by the K sensors are combinations of P ex-
ponentially modulated sinusoids (impulse responses). A given si-
nusoidal component, indexed by p, has the same frequency ωp and
damping factor αp across sensors, but different phases φpk and am-
plitudes Apk. The measurements are distorted by a complex noise
wk, assumed white gaussian of variance 2σ2 and uncorrelated be-
tween sensors. The expression of the signal received by the k-th
sensor at time t is then :

Xk(t) =

PX
p=1

Apke
−αptei(φpk+ωpt) + wk(t) (1)



Such signals, sums of the same atoms with different coefficients,
can be described by the Joint Sparsity Model 2 (JSM-2) introduced
in [6]. They are found in nearfield acoustical holography of normal
modes of freely-vibrating plates, where each normal mode of the
plate radiates a damped sinusoid, solution of a second-order differ-
ential equation. Amplitudes and phases of each mode, varying in
space, are used to recover the modal shape.

These signals are sampled at M times tm, identical for each
channel.

3. CRAMER-RAO BOUNDS

Cramér-Rao bounds (CRBs) for monochannel damped sine waves
can be found in [7]. Following the same computation, these results
can be generalized to derive bounds for the multichannel case (K
channels) of a single damped sinusoid affected by white Gaussian
noise :
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monochannel ones, especially for the damping and the frequency
parameters which are shared among the channels : whereas the
monochannel bounds for frequency and damping are inversely pro-
portional to the ratio of the amplitude squared at t = 0 over the
noise variance (ratio we will call Signal-to-Noise Ratio (SNR) in the
remainder of the paper, with a slight abuse of language) the multi-
channel bounds are inversely proportional toKR, i.e. the sum of the
SNRs in each channel. Phases and amplitudes, although different for
each channel, also have better bounds : they are sums of two terms,
one inversely proportional to the sum of the SNRs, and one inversely
proportional to the SNR of the channel. This can be explained by
the fact that a better estimation of the frequency and the damping
gives a better estimation of the phases and the amplitudes. Both
algorithms used in this paper show a similar behavior : phases and
amplitudes are estimated by projecting the signal on the subspace
spanned by the chosen atoms. A better estimation of this subspace
will obviously lead to a better estimation of the parameters of the
components.

4. OPTIMAL OBSERVATION LENGTH

In this section, we investigate how these Cramér-Rao bounds can be
used to compute the optimal observation length T , as a function of
the damping parameter α, for a fixed number of samples M .

Here, in order to obtain closed-form solutions, we assume that
the signals are uniformly subsampled, i.e. tm = m

M
T = m∆t, for

0 ≤ m < M . We can then rewrite the frequency and damping
Cramér-Rao bounds as

CRBω = CRBα =
1
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α2

M
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Fig. 1. Values of f(M,β) that governs the CRB as a function of the
observation duration T = β/α. M is the number of samples in the
interval [0, T ], α is the decay time of the sinusoid.

f1(x) = e−2x, f2(x) = xe−2x, f3(x) = x2e−2x

Here, the β = αT parameter represents the number of decay
characteristic times 1/α that is being used for the observation inter-
val [0, T ] = [0, β/α]. The optimal observation length is the Topt
minimizing the lower bound. It should be noted that, as seen from
Equation (2), this optimum is independent of the numberK of chan-
nels and the SNR R. The limit of f as M goes to infinity can be
computed (discrete sums are seen as Riemann sums of f1, f2 and f3

and therefore converge to their integral on [0, β]) :

f(+∞, β) =
8β(e4β − e2β)

e4β − 2e2β + 4β2 + 1

Values of f(M,β) for different M and β = αT and its limit
for M = ∞ are plotted figure 1, where optimal values of β are in-
dicated. We can see that the optimal value of β is approximately 2
for every M , thus the optimal observation length for a damped sinu-
soid is approximately Topt = 2

α
. The bottom line goes as follows:

when analyzing exponentially damped sinusoids under a constraint
on the total number M of samples, it is better not to take the first
M samples, but rather to spread the samples across the signal. How-
ever, after too many characteristic decay times 1

α
the samples mostly

represent noise and carry little information. For uniform sampling, a
good trade-off is to sample within [0, 2

α
].

In practical estimation of sinusoidal components in a signal with
uniform sampling, the bandwidth is limited by the Shannon-Nyquist
theorem. A solution is to sample the signal irregularly. The follow-
ing two sections describe different algorithms that can be used to
recover the parameters of signals from irregular samples. Numerical
tests in section 7 show that the optimal sampling duration T ≈ 2/α
still holds approximately for non-uniform sampling with a constant
density on [0, T ].

5. SIMULTANEOUS ORTHOGONAL MATCHING
PURSUIT

Simultaneous orthogonal matching pursuit [4], a greedy sparse ap-
proximation algorithm specialized in recovering JSM-2 signals, aims



at identifying the components one at a time, by selecting the atom of
a dictionary’s most correlated, on average, with the signals, subtract-
ing the contribution of this component, and iterating until the desired
number of components are found.

An atom of frequency ω and damping α is
ψωα = γωα(e(iω−α)t1 , . . . , e(iω−α)tm , . . . , e(iω−α)tM ), with γωα
such that ||ψωα|| = 1.

The algorithm works as follows :

1. Initialize the residuals rk,0 = (Xk(t1), . . . , Xk(tM ))T , set
the iteration counter l = 1

2. Select the pair (ωl, αl) maximizing
PK
k=1 |〈ψωα, rk,l〉|

p.

3. Let qk,l be the orthogonal projection of rk,l on
span(ψω1α1 , . . . , ψωlαl) and rk,l+1 = rk,l − qk,l

4. Increment l and iterate until enough components are found

5. Estimate phases and amplitudes with the coordinates of the
projection ofXk in the space spanned by (ψω1α1 , . . . , ψωlαl).

The parameter p ≥ 1 controls the way information is integrated
between channels. In this paper, p will always be equal to 2.

As this algorithm uses a Fourier approach to detect sinusoidal
component, its resolution is limited, restricting its use to signals with
clearly separated partials. When the signals contains sinusoids with
very close frequencies, which indeed occurs in some experimental
setups, e.g. holography of plates of particular geometries, high reso-
lution methods can be helpful, as described in the next section.

6. MULTICHANNEL MUSIC

High resolution spectral estimation methods, such as MUSIC [5],
are often used to go beyond the standard limitations of plain Fourier-
based methods. Based on the computation of a signal subspace and
a noise subspace, MUSIC requires an estimation of the covariance
of the signal. This covariance is, in the traditional monochannel
and regularly sampled case, estimated by a average over overlapping
windows. In our case, this averaging is not done in this way, made
impossible by the irregular sampling, but over the different signals
available. The signals can be arranged in a matrix X of general term
xij = Xi(tj). Our signal model 1 allows us to write X as:

X = VA + W

where V is the matrix containing the damped sinusoids sampled at
the times tm, vij = e(iωj−αj)ti , and A contains the amplitudes and
phases of each partial, aij = Aije

iφij .
The first step is to estimate the matrix V. The autocorrelation of

the noiseless signals Ru = VA(VA)H has the same image as the
matrix V, under the condition that the matrix A has sufficient rank
(this, among other conditions, requires more channels than compo-
nents). This image, the signal subspace, is also the space related to
the P strictly positive eigenvalues of Ru. The nullspace is called
noise subspace. The eigenvalues of the autocorrelation of the noisy
signals Rn = E[XXH ] = Ru + σ2I are the eigenvalues of Ru

augmented by σ2. The signal subspace is thus the space related to
the P largest eigenvalues of Rn.

Frequencies and damping are found by searching the vectors
ψωα = (e(iω−α)t1 , . . . , e(iω−α)tM ) contained by the signal sub-
space. These vectors are orthogonal to the noise subspace, the length
of their projection Πn(ψωα) in the noise subspace is 0. In practice,
as we only have an estimate of Rn, we pick the values of ω and α
where the pseudospectrum S(ω, α) = 1

||Πn(ψωα)||2 reaches a maxi-
mum.
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Amplitudes and phases are then found, as in SOMP, with the
coordinates of the projection of the signals in the space spanned by
the selected atoms.

It should be noted that the use of the MUSIC algorithm is stan-
dard in antenna processing, but in a framework where regularly sam-
pled signals (in time) are gathered by different sensors (possibly ir-
regularly sampled in space) to infer directions of arrival. The novelty
is to use here the dual view of the same problem, where the signals
are irregularly sampled in time, under the constraint that the sam-
pling times tm are identical across channels to determine frequencies
and dampings of sinusoidal components of signals.

7. PERFORMANCES

7.1. Accuracy

The accuracy of SOMP and MUSIC is compared to the Cramér-Rao
bound in two cases. For both cases, the signals are sum of a unique
damped sinusoid with varying amplitudes and phases over the chan-
nels, and gaussian white noise.



First, with fixed SNR (30 dB), number of samples (M = 20)
damping (α = 0.1) and number of channels (K = 128), we estimate
the variance of the estimators for different observation length T , with
uniform sampling and nonuniform sampling (sampling times drawn
from a uniform distribution on [0, T ]). These estimated variances are
plotted on Fig. 2 in the case of SOMP (MUSIC exhibits a similar be-
havior). Estimation with uniform sampling has good performances
compared to the CRBs, and has the same behaviour, with a mini-
mum at approximately β = 2. Variances for nonuniform sampling
are similar, with minima close to β = 2. It should be noted that
some of the variances are lower than the Cramér-Rao bounds for
uniform sampling, which is not surprising as some random choices
from nonuniform sampling times may better catch the structure of
the signal. These results justify the arguments of section 4, as the op-
timal observation length T ≈ 2/α given by the CRB in the uniform
case is close to the actual optimal length for nonuniform sampling.

The second case is with varying SNRs, with fixed number of
channels (K = 10), damping (α = 0.01), number of samples (M =
20), and quasi optimal observation length (T = 200). We compare
on Fig. 3 the joint frequency estimation (SOMP, multichannel MU-
SIC), and the averaged monochannel estimation (OMP, monochan-
nel MUSIC). For low SNRs, joint and averaged estimations have
similar performances, close the Cramér-Rao bounds, but between
SNRs of 5 dB and 15 dB, separate estimations fails, whereas joint
estimation still recovers the frequency of the sinusoids.

7.2. Resolution

The resolution of SOMP and MUSIC are compared with signals con-
taining two components, with the same amplitude and random phase
for each channel. We have here 50 samples picked from 1024 regu-
larly spaced times, and 100 channels, with no noise. Figure 4 shows
that SOMP (p = 2) does not recover the two components when their
frequencies are close, whereas MUSIC only fails when frequencies
coincide. Furthermore, the frequencies estimated by SOMP are bi-
ased even with well separated frequencies, where MUSIC does not
show such a bias.

7.3. Computational complexity

Here, we compare the complexity of the different algorithms for a
given target accuracy, tuning for each of them the number of sam-
ples in such a way that the error variance stays below 3 × 10−10.
The fastest algorithm is multichannel MUSIC with nonuniform sam-
pling, as it needs the lowest number of samples per channel. Table
1 shows computation times for 100 channels and 1 channel, uni-
form and nonuniform sampling, using Matlab on a 3.2 GHz pro-
cessor. MUSIC is more efficient for multichannel estimation, while
SOMP (actually OMP) is faster for monochannel estimation. This
can be explained by the fact that the complexity of MUSIC is dom-
inated by the computation of the pseudo-spectrum of complexity
O(NM2), identical for multichannel and monochannel estimation,
while SOMP is dominated by the computation of the correlations, of
complexity O(KNM), linear in the number of channels.

8. CONCLUSION

There are many experimental cases where antennas of sensors record
a small number of sinusoidal components, possibly damped, varying
only in phase and amplitude on every sensor. In this paper we have
shown that in these cases, it is possible to use non-uniform sam-
ples which brings a significant advantage in terms of complexity,

nonuniform sampling uniform sampling
100 ch. 1 ch. 100 ch. 1 ch.

samples per channel 10 1000 350 1600
MUSIC 0.06 70.2 1.9 170.89

SOMP (p = 1 or 2) 0.21 0.96 3.2 1.48

Table 1. Computation time (seconds) for one sinusoidal component,
and similar accuracy.

and memory requirements. In the damped case, CRBs show that the
samples are best spread over [0, 2/α], i.e. over 2 times the typical
decay time of the sinusoids.

To simultaneously recover the sinusoidal parameters in all the
channels, we have proposed and compared two algorithms: a generic
distributed compressed sensing algorithm, SOMP, and a variant of
a spectral estimation algorithm, MUSIC. Both algorithms use the
common sparsity of the channels and the larger period of time
spanned by the samples to give a sharper accuracy for the frequency
estimation, not so far from the Cramér-Rao bounds for reasonable
SNRs. However, both algorithm have drawbacks : SOMP, based on
a Fourier approach, cannot resolve close components, and MUSIC
can have a large complexity for a small number of channels.
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